食品科学 ›› 2020, Vol. 41 ›› Issue (5): 15-22.doi: 10.7506/spkx1002-6630-20191009-055

• 基础研究 • 上一篇    下一篇

抗菌肽brevilaterin与ε-聚赖氨酸对金黄色葡萄球菌的协同抑菌机理

宁亚维,苏丹,付浴男,韩盼盼,王志新,贾英民   

  1. (1.河北科技大学生物科学与工程学院,河北 石家庄 050018;2.北京工商大学食品与健康学院,北京 100048)
  • 出版日期:2020-03-15 发布日期:2020-03-23
  • 基金资助:
    “十三五”国家重点研发计划重点专项(2016YFD0400805);国家自然科学基金面上项目(31771951); 河北省重点研发计划项目(18227127D)

Antibacterial Mechanism of Antimicrobial Peptide Brevilaterin Combined with ε-Polylysine against Staphylococcus aureus

NING Yawei, SU Dan, FU Yunan, HAN Panpan, WANG Zhixin, JIA Yingmin   

  1. (1. School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; 2. School of Food and Health, Beijing Technology and Business University, Beijing 100048, China)
  • Online:2020-03-15 Published:2020-03-23

摘要: 金黄色葡萄球菌是食品中常见的致病菌,控制食品中金黄色葡萄球菌的生长繁殖对提高食品安全性至关重要。本研究以金黄色葡萄球菌作为指示菌,考察了抗菌肽brevilaterin与ε-聚赖氨酸的协同抑菌机理。抑菌动力学结果表明抗菌肽与ε-聚赖氨酸对金黄色葡萄球菌具有协同抑菌效果;细胞膜质子动力势研究结果显示,抗菌肽对跨膜pH值梯度无明显影响,ε-聚赖氨酸会破坏跨膜pH值梯度,1/4最小抑菌浓度(minimal inhibitory concentration,MIC)抗菌肽+1/4 MIC ε-聚赖氨酸(联用组)对跨膜pH值梯度产生了协同破坏作用;采用流式细胞术结合荧光显微镜考察细胞膜的完整性,发现抗菌肽对细胞膜完整性具有较强的破坏作用,1/4 MIC抗菌肽即可导致36.3%的膜破损,而ε-聚赖氨酸对膜完整性损伤较小,1/4 MIC ε-聚赖氨酸仅破坏10.4%的细胞膜完整性,两者联用可对细胞膜完整性产生协同破坏作用,导致51.3%细胞膜完整性发生损伤;采用透射电子显微镜观察了细胞超微结构,发现抗菌肽和ε-聚赖氨酸联用较单独使用对细胞形态和细胞内容物的泄漏产生了协同破坏作用;十二烷基硫酸钠-聚丙烯酰胺凝胶电泳结果显示,ε-聚赖氨酸会抑制菌体蛋白质的合成或降解蛋白质,而抗菌肽对蛋白质合成无影响;琼脂糖凝胶阻滞电泳表明,抗菌肽对菌体DNA条带无明显变化,而ε-聚赖氨酸以及两者联用会造成DNA滞留,表明ε-聚赖氨酸可以通过与DNA结合发挥抑菌作用。上述结果表明,抗菌肽brevilaterin和ε-聚赖氨酸联用可以增强对细胞膜的破坏强度,且兼具抗菌肽对呼吸链脱氢酶活性的抑制与ε-聚赖氨酸对跨膜pH值梯度的破坏和DNA的结合作用,从而实现多靶位协同抑菌。

关键词: 抗菌肽brevilaterin, ε-聚赖氨酸, 协同抑菌机理, 金黄色葡萄球菌

Abstract: Staphylococcus aureus is a common foodborne pathogenic bacterium, and controlling S. aureus is of great importance for the improvement of food safety. Thus, using S. aureus as an indicator microorganism, the synergistic antibacterial mechanism of the antimicrobial peptide brevilaterin combined with ε-polylysine was investigated. Time-kill kinetics showed that brevilaterin and ε-polylysine had a synergistic antibacterial effect on S. aureus. Transmembrane proton potential kinetics indicated that ε-polylysine could disrupt the transmembrane pH gradient, but brevilaterin had no obvious effect. The combination of brevilaterin and ε-polylysine each at 1/4 minimal inhibitory concentration (MIC) synergistically damaged the transmembrane pH gradient. Flow cytometry combined with fluorescence microscopy was used to investigate the cell membrane integrity, and the results showed that 36.3% of the cells were damaged by brevilaterin at 1/4 MIC, while only 10.4% of the cells were destroyed by ε-polylysine at 1/4 MIC. Their combined use could synergistically damage the cell membrane integrity, resulting in 51.3% cell membrane damage. The ultrastructure of cells observed by transmission electron microscopy showed that the combined use of brevilaterin and ε-polylysine had a synergistic effect in disrupting cell morphology and causing leakage of cellular contents when compared with either alone. Sodium dodecylsulfate-polyacrylamide gel?electrophoresis suggested that ε-polylysine could inhibit bacterial protein synthesis or result in the degradation of proteins, while brevilaterin had no effect on protein synthesis. Agarose gel retardation electrophoresis showed that brevilaterin had no effect on bacterial DNA, and ε-polylysine and its combination with brevilaterin could lead to the retention of DNA, indicating that ε-polylysine could inhibit bacteria by binding with DNA. Therefore, the combination of brevilaterin and ε-polylysine could synergistically disrupt the membrane integrity, and exert a synergistic antibacterial effect through inhibition of respiratory chain dehydrogenase activity by brevilaterin, and destruction of transmembrane pH gradient by ε-polylysine as well as its binding with DNA.

Key words: antimicrobial peptide brevilaterin, ε-polylysine, synergistic antibacterial mechanism, Staphylococcus aureus

中图分类号: