食品科学

• 专题论述 • 上一篇    下一篇

味觉受体及其传感器研究与应用

庞广昌,陈庆森,胡志和,解军波   

  1. 天津商业大学生物技术与食品科学学院,天津市食品生物技术重点实验室,天津 300134
  • 出版日期:2017-03-15 发布日期:2017-03-28

Advances in Research on Taste Receptors and Application Prospects of Taste Sensors

PANG Guangchang, CHEN Qingsen, HU Zhihe, XIE Junbo   

  1. Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
  • Online:2017-03-15 Published:2017-03-28

摘要: 中国传统饮食和食品的烹制与加工讲究色、香、味俱全,其中“酸、甜、苦、辣、咸五味调和”又构成其核心标准。国际上也分为“五味”,分别为“酸、甜、苦、咸、鲜”,其中少了辣味,多了鲜味。也有人建议将脂肪的味道定义为“香”味,但是中国人的“香”实际上是“香气”,属于嗅觉,而非味觉。大量研究证明,多数味觉受体作为营养传感系统,如苦、甜、鲜都属于G蛋白偶联受体超家族成员,而且其分布并不限于味蕾、肠道等,其他组织均有分布,是药物筛选的重要靶标。然而,到目前为止,市场上进行味觉测定仍然依赖于电子鼻和电子舌等仪器设备,味觉受体传感器及其有关技术则仍处于探索和研究阶段。其主要原因是:味觉受体和其他大多数受体一样,在与配体识别和启动信号传递时主要依赖于弱相互作用,如何将这些弱相互作用转变为传感器可以处理并放大的光、声、电、磁、热等信号,从而实现其定量测定是一个关键性难题。但是,由于味觉受体在医药筛选、食品添加剂、食品的功能性评价和代谢综合征预防等方面的巨大应用与开发前景,其检测方法一直是科学家关注的焦点之一。本文将针对味觉受体及其传感器检测技术的研究进展进行综合评述,讨论其未来发展和应用前景。

关键词: G蛋白偶联受体, 生物传感器, 味觉受体, 电子舌

Abstract: The color, smell and taste with perfect blend of the five basic flavors namely sourness, sweetness, bitterness, spice and saltiness as core criterion are three aspects to describe traditional Chinese diet and food cooking and processing. The internationally recognized five tastes are identical to the Chinese ones except for the replacement of spice by umami. It is suggested that the taste of fat be defined as “aroma”, but the Chinese “aroma” belongs to the sense of smell, rather than the sense of taste. Accumulated evidences have demonstrated that the majority of taste receptors as a nutrient sensing system, such as bitterness, sweetness and umami, which have been used as the target for drug screening, belong to the super family of G protein coupled receptor, and its distribution is not restricted to the taste buds, intestinal tract and other tissues. Although a lot of achievements have made in the study of taste receptors, but so far, the instrumental determination of taste still depends on electronic nose and electronic tongue. Taste receptor-based biosensors and related technologies are still under exploration and research. The major reason is due to the effects of all receptors including taste receptors with weak interaction with their ligands. How to transform the weak interaction into signals such as light, sound, electric, magnetism and heat, which can be handled and amplified by sensors to realize quantitative measurement, is a critical problem. Because of the great prospects for the development and application of taste receptors in medical screening, functional evaluation of foods and additives, and the prevention of metabolic syndromes, developing detection methods based on using taste receptors is always one of the research focuses. This article aims to provide a systematic review of recent advances in our knowledge about taste receptors and in the development of taste receptor-based biosensors. The prospects for their future application are discussed as well.

Key words: G-protein-coupled receptors (GPCRs), biosensor, taste receptors, electronic tongue

中图分类号: