食品科学 ›› 2019, Vol. 40 ›› Issue (13): 195-202.doi: 10.7506/spkx1002-6630-20180518-261

• 营养卫生 • 上一篇    下一篇

家禽屠宰场微生物菌群结构及大肠杆菌耐药性评估

王佩佩,戴贤君,杨 华,肖英平   

  1. 1.中国计量大学生命科学学院,浙江 杭州 310018;2.浙江省农业科学院农产品质量标准研究所,浙江 杭州 310021;3.浙江省植物有害生物防控省部共建国家重点实验室培育基地,浙江 杭州 310021
  • 出版日期:2019-07-15 发布日期:2019-07-23
  • 基金资助:
    浙江省农业农村厅特色农产品全产业链安全风险管控重大专项(ZJNY2018001-011);浙江省公益技术应用研究项目(2016C32073)

Analysis of Microbial Community Structure in Poultry Slaughterhouses and Antibiotic Resistance Assessment of Escherichia coli

WANG Peipei, DAI Xianjun, YANG Hua, XIAO Yingping   

  1. 1. College of Life Science, China Jiliang University, Hangzhou 310018, China; 2. Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 3. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Hangzhou 310021, China
  • Online:2019-07-15 Published:2019-07-23

摘要: 家禽屠宰场的水体、地面和屠宰器械表面微生物对鸡肉微生物交叉污染有重要的影响。本研究的主要目的是分析家禽屠宰场水体、地面和与鸡肉接触的屠宰器械表面的细菌结构及其耐药基因携带状况,并从中分离大肠杆菌进行耐药性评估和肠杆菌基因间重复共有序列-聚合酶链式反应(enterobacterial repetitive intergenic consensus polymerase chain reaction,ERIC-PCR)分型分析。在浙江省某大型屠宰场的挂禽间、宰杀沥血间、浸烫脱羽间、净膛间、预冷间、包装间、冷藏间、内脏间区域采集水体,并用无菌纱布擦拭各区域的地面和器械表面采集微生物,基于16S rRNA V3~V4的Illumina高通量测序方法分析其菌群结构多样性,并从中分离大肠杆菌,分别用PCR对总细菌和大肠杆菌进行9大类耐药基因的检测分析和大肠杆菌的ERIC-PCR分型研究。结果表明:屠宰场不同区域水体、地面和屠宰器械表面微生物均以变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和放线菌门(Actinobacteria)为主;优势菌属为不动杆菌属(Acinetobacter)、链球菌属(Streptococcus)、嗜冷杆菌属(Psychrobacter)和假单胞菌属(Pseudomonas)等一些腐败菌属与致病菌属。屠宰场不同区域的水体、地面和屠宰器械表面存在的耐药基因种类较多,共检测到21 种耐药基因分布在这些样品中,其中sulI、sulII、blaTEM、aadA1、floR、tetA、ereA和qnrS等8 种耐药基因检出率达88.9%以上,与从中分离的大肠杆菌耐药基因检出情况吻合度较低,这表明还存在其他携带耐药基因的菌株,此外分离的大肠杆菌菌株多重耐药现象严重。ERIC-PCR分型结果表明,大肠杆菌可以沿屠宰生产链进行克隆传播。本实验将为探究屠宰环境微生物与鸡肉污染微生物之间的关系提供理论参考。

关键词: 家禽屠宰场, 菌群结构, 耐药基因, 高通量测序

Abstract: Microorganisms in the environment as well as on the surface of slaughtering equipment play a significant role in microbial cross-contamination during chicken processing in slaughterhouses. The aim of this study was to investigate the microbial community structure and antibiotic resistance genes in the water as well as on the ground and slaughtering equipment of a slaughterhouse. Moreover, Escherichia coli were isolated for drug resistance evaluation and genomic typing by enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). Water was sampled from the hanging, slaughtering, scalding and dehairng, evisceration, pre-cooling, packaging, refrigeration and viscus storage sections and bacterial samples were collected from the ground of each section and the surface of slaughtering equipment using sterile gauze swab. The microbial community structure was analyzed by high-throughput 16S rRNA V3–V4 gene sequencing on Illumina Hiseq, and the total bacteria and E. coli isolated were evaluated for resistance genes to 9 classes of 24 antiobiotics by PCR. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the predominant phyla in all the slaughterhouse samples and the dominant genera were spoilage and pathogenic Acinetobacter, Streptococcus, Psychrobacter and Pseudomonas. A total of 21 drug resistance genes were detected in these samples, and the prevalence of sulI, sulII, blaTEM, aadA1, floR, tetA, ereA and qnrS was more than 88.9%, which did not coincide with that in the E. coli isolates. This indicates that there may be some other strains carrying drug resistance genes and the multiple drug resistance of the E. coli isolates is serious. ERIC-PCR genotyping results showed that E. coli can be cloned and propagated along the slaughter production chain. This study will lay the theoretical foundation for exploring the relationship between microorganisms in the slaughterhouse environment and the contaminant microorganisms in chicken.

Key words: poultry slaughterhouse, microbial community structure, drug resistance gene, high-throughput sequencing

中图分类号: