食品科学 ›› 2020, Vol. 41 ›› Issue (5): 173-179.doi: 10.7506/spkx1002-6630-20190311-135

• 营养卫生 • 上一篇    下一篇

黑参多糖抗疲劳作用的分子机制

刘兴龙,赵迎春,陈雪艳,佘欣鑫,SADIA Khatoon,姜颖,解慧勇,蒋白楠,郑毅男,刘文丛,丁传波   

  1. (1.吉林农业大学中药材学院,吉林 长春 130118;2.吉林省健维天然生物科技有限公司,吉林 临江 134300;3.参之道(通化)生物科技有限公司,吉林 通化 134001)
  • 出版日期:2020-03-15 发布日期:2020-03-23
  • 基金资助:
    长春市科技局医药健康产业发展科技攻关项目(17YJ013)

Anti-fatigue Effect and Molecular Mechanism of Black Ginseng Polysaccharides in Mice

LIU Xinglong, ZHAO Yingchun, CHEN Xueyan, SHE Xinxin, SADIA Khatoon, JIANG Ying, XIE Huiyong, JIANG Bainan, ZHENG Yinan, LIU Wencong, DING Chuanbo   

  1. (1. College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; 2. Jilin Jianwei Natural Biotechnology Co. Ltd., Linjiang 134300, China; 3. Shenzhidao (Tonghua) Biotechnology Co. Ltd., Tonghua 134001, China)
  • Online:2020-03-15 Published:2020-03-23

摘要: 目的:探讨黑参多糖对疲劳型小鼠机体的改善作用及其抗疲劳作用机制。方法:通过对小鼠进行负重游泳实验,建立一种由肌肉锻炼引起的疲劳模型,小鼠灌胃黑参多糖(50、100、200 mg/(kg mb·d))28 d后,记录力竭游泳时间,测定血清中血乳酸(blood lactic acid,BLA)、血清尿素氮(blood urea nitrogen,BUN)、白细胞介素(interleukin,IL)-6水平,检测肝脏中肝糖原、丙二醛(malondialdehyde,MDA)含量和超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活力,应用免疫印迹实验评估促炎因子IL-1β、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)的表达水平,通过逆转录实时荧光定量聚合酶链式反应法分析小鼠骨骼肌中过氧化物酶体增殖物激活受体γ共激活因子1α(peroxisome proliferator-activated receptor γ coactivator-1α,PGC-1α)、过氧化物酶体增殖物激活受体α(atherosclerosis peroxisome proliferator activated receptory α,PPARα)基因表达情况。结果:与负重游泳对照组相比,黑参多糖显著延长负重游泳组小鼠负重游泳时间(P<0.05);与不负重游泳对照组相比,黑参多糖显著降低血清中BLA、BUN、IL-6和肝脏中MDA水平(P<0.05),提高肝脏中SOD、GSH-Px活力和肝糖原含量(P<0.05),抑制肝脏中与炎症反应相关的IL-1β和TNF-α表达,同时显著提高PGC-1α、PPARα的表达水平(P<0.05)。结论:黑参多糖可以通过调节骨骼肌中PGC-1α、PPARα基因表达和抑制肝部炎症反应发挥抗疲劳作用。

关键词: 黑参多糖, 抗疲劳作用, 氧化应激, 炎症因子, 基因表达

Abstract: Objective: To investigate the effect of black ginseng polysaccharides (BGP) on alleviating physical fatigue in mice and to explain the underlying mechanism. Methods: A mouse model of muscle fatigue was established by weight-bearing swimming and the mice were orally administered simultaneously with BGP at 50, 100 or 200 mg/(kg mb·d) for 28 days. Exhaustive swimming time was recorded. Then, the levels of blood lactic acid (BLA), blood urea nitrogen (BUN) and serum interleukin-6 (IL-6) as well as the contents of glycogen and malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in liver were measured. The expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was evaluated by using Western blot; the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and atherosclerosis peroxisome proliferator activated receptory α (PPARα) in skeletal muscle was analyzed by reverse transcription quantitative real-time polymerase chain reaction. Results: Compared with the weight-bearing swimming control group, BGP significantly prolonged exhaustive swimming time (P < 0.05), and it significantly decreased the levels of BLA, BUN and IL-6 and MDA content in liver (P < 0.05), improved the activities of SOD and GSH-Px and the content of glycogen (P < 0.05), inhibited the expression of IL-1β and TNF-α, and increased the expression levels of PGC-1α and PPARα compared with the non-weight-bearing swimming control group (P < 0.05). Conclusion: BGP have good anti-fatigue effect by regulating the expression of PGC-1α and PPARα genes in skeletal muscle and inhibiting inflammatory reaction in liver.

Key words: black ginseng polysaccharides, anti-fatigue effect, oxidative stress, inflammatory factors, gene expression

中图分类号: