人参花蕾提取液清除羟基自由基作用研究

马 勇,邵立新 (渤海大学生物与食品科学学院,辽宁 锦州 121000)

摘 要:以人参花蕾为原料,以 50%的乙醇水溶液为提取剂,得到人参花蕾提取液,其中人参皂苷提取率为 8.17%。向 Fenton 反应体系中加入人参花蕾提取液,可以有效地清除体系中的羟基自由基(•OH)。清除•OH的效果随着提取液加入量的增加而增大,加入 5.00%提取液(人参皂苷含量 12.30μg/μl)时,清除效果最佳。

关键词:人参花蕾;提取液;人参皂苷;清除自由基

Study on Hydroxy Free Radical Scavenging Effect of Ginseng Flowers Extract

MA Yong, SHAO Li-xin

(College of Biotech and Food Science, Bohai University, Jinzhou 121000, China)

Abstract: Ginseng flowers were extracted by using 50% ethanol aqueous solution to prepared ginsenoside extract. The yield of ginsenoside is 8.17%. The ginsenoside extract added into Fenton reaction system can scavenge hydroxyl free radical (\bullet OH) efficiently. The scavenging effect increases with the addition amount of the ginsenoside extract rising, and is up to the highest at the addition amount of 5% (content of ginsenoside $12.30 \mu g/\mu l$).

Key words: ginseng flower; extract; ginsenosid; scavenging free rodical

中图分类号: TS252 文献标识码: A

文章编号: 1002-6630(2008)10-0101-04

人参花为完全花,由花萼、花冠、雄花、雌花组成。开花前的人参花蕾为绿色,其中含有20种皂苷活性物质、17种氨基酸、11种微量元素[1]。人参花蕾中皂苷总量是人参根的4.06倍,其中可提升人体免疫力并抑制癌细胞成长的人参皂苷Rd含量(高达2.77%)是人参根的13.85倍;能保护细胞膜、防止细胞老化、扩张血管、降低血压和血糖,提高肝细胞蛋白质和NAD的合成,显著抑制宫颈癌细胞生长的人参皂苷Re含量是人参根的14.7倍[2]。由此可见人参花蕾的药用和保健价值并不低于人参根。

本实验以人参花蕾为原料,以 50% 的乙醇水溶液为提取剂,通过离心、减压、萃取、减压、溶解、再次离心、定容,得到人参皂苷提取液^[3]。通过向产生羟基自由基的化学反应体系中加入人参花蕾提取液,清除反应中产生的自由基^[4-5],从而阐明人参花蕾中人参皂苷清除自由基的作用和抗衰老的功能。

1 材料与方法

1.1 材料与试剂

人参花蕾(绿色干燥花蕾) 吉林省长春市售;人参皂苷 Re 大连医海生物科技有限公司;甲醇、乙醇、

正丁醇、硫酸亚铁、水杨酸等均为分析纯。

1.2 仪器与设备

RE.52-86A 旋转蒸发仪器 上海亚荣生化仪器厂; SHZ-D(III)循环水真空泵 上海申光仪器仪表有限公司; 800 型离心沉淀器 上海手术器械厂; 722-光栅分光光 度计 上海精密科学仪器有限公司。

1.3 方法

1.3.1 人参花蕾的预处理——脱脂

将人参花蕾于 60℃干燥 1h,碾碎,过 60 目筛。 称取 10g,按 1:15 的固液比加入乙醚,用磁力搅拌器搅拌脱脂两次,每次 1.5h,弃去溶剂,得到淡绿色残渣。 待其乙醚气味消失,再于 60℃干燥 1h,即为脱脂人参 花蕾的样品。这样可以避免一些脂类物质溶解于乙醇 中,提高人参皂苷的提取率。

1.3.2 人参花蕾中人参皂苷的提取(乙醇回流法)[3]

精密称取脱脂人参花蕾 6.00g,置于蒸馏瓶中,按照 1:20 的固液比加入 120ml 50% 乙醇,回流提取人参花蕾中人参皂苷,离心去除残渣;减压蒸馏回收乙醇,得到人参皂苷浸膏粗品;用水饱和正丁醇萃取人参皂苷浸膏,收集正丁醇溶液,减压蒸馏回收正丁醇,得到人参皂苷浸膏;用甲醇溶解人参皂苷浸膏,定容到 40ml

(脱脂人参花蕾质量与溶剂甲醇体积之比约为1:6),摇匀,即为人参皂苷提取液,称之为提取液 Yı(黄绿色)。

1.3.3 人参皂苷的测定[4]

以人参皂苷 Re 为标准物,通过标准曲线法定量。精密称取人参皂苷 Re 标准物 5.00mg 溶于 2.50ml 甲醇中,摇匀,配制成 2.00 μg/μl 的溶液。分别吸取此溶液 50 (100 μg)、75(150 μg)、100(200 μg)、125(250 μg)、150 (300 μg) μl,置于 25ml 的比色管内,用热风吹干溶剂后,分别加入 5% 的香草醛冰醋酸 0.20ml、高氯酸 0.80ml,混匀,盖塞。将比色管置于 60℃水浴中加热 15min,取出冷却到室温,分别加入冰醋酸 10 ml,摇匀。静置 15min 后,于波长 550nm 处测定其吸光度。以人参皂苷 Re 标准物质量为横坐标,吸光度为纵坐标,绘制标准曲线,计算线性回归方程式。

$$y=ax+b$$
, $a=\frac{n\sum xy-\sum x\sum y}{n\sum x^2-(\sum x)^2}$, $b=\frac{\sum x^2y-\sum x\sum yx}{n\sum x^2-(\sum x)^2}$

式中,y为一定体积的Re标准物样液中总皂苷的质量(μg),x为吸光度。

精确量取三份 $20 \mu l$ 提取液 Y_1 ,分别置于 25 ml 的比色管中,测定、计算提取液 Y_1 中人参皂苷浓度及人参花蕾中人参皂苷的提取率。

$$T(\%) = \frac{C \times V_1}{M \times \frac{V_1}{V_2}}$$

式中, C 为提取液 Y_1 浓度($\mu g/\mu l$); V_1 为加入提取液体积(μl); M 为制备提取液 Y_1 人参花蕾质量(g); V_2 为提取液 Y_1 总体积(m l); T 为人参花蕾中人参皂苷提取率(%)。

1.3.4 人参皂苷提取回收率测定

精密称取脱脂人参花蕾粉末 1.0034g 两份,其中一份加入 0.0023g 的人参皂苷 Re 标准物,按照 1.3.2 和 1.3.3 的操作要点,提取、测定人参花蕾中人参皂苷,计算回收率。以只有人参花蕾的提取液为 Y_2 ,人参花蕾加人参皂苷 Re 标准物的提取液为 Y_3 。根据脱脂人参花蕾质量与溶剂甲醇体积之比约为 1:6,将 Y_2 、 Y_3 均定容为 5.5 ml。

$$P(\%) = \frac{ Y. 中人参皂苷质量平均值 - Y. 中人参皂苷质量平均值 }{ Y_3 中人参皂苷 Re 标准物质量 } \times 100 = \frac{ (C-C_1) \times V_1 \times V}{ M \times V_1}$$

式中, P 为 Re 对照样品的回收率(%); C₁ 为 Y₂ 的 平均浓度(μ g/ μ l); C₂ 为 Y₃ 的平均浓度(μ g/ μ l); M 为 Y₃ 中加入 Re 对照样的质量(g); V₁ 为加入提取液体积(μ l); V 为提取液定容后的总体积(ml)。

1.3.5 人参花蕾提取物(人参皂苷)活性研究——体外清

除羟基自由基(•OH)

采用 Fenton 反应产生羟自由基,加入人参花蕾提取液(人参皂苷)清除羟基自由基(•OH),以水杨酸-乙醇为显色剂,与 Fe³⁺ 在酸性条件下生成有色络合物,通过分光光度法测定 Fe³⁺浓度,从而测定人参花蕾提取物(人参皂苷)对羟基自由基(•OH)的清除率^[4]。

但是,由于 Fe²⁺ 也可以与显色剂形成络合物,人参花蕾提取液 Y₁ 也有一定的颜色,都具有一定的吸光度。因此,在实验中以硫酸亚铁、水杨酸 - 乙醇、不同体积的人参花蕾提取液 Y₁ 的混合溶液为本底吸收,在计算中予以扣除。

羟基自由基清除率(%)=
$$\frac{A_0 - (A_x - A_{x0})}{A_0} \times 100$$

式中, A_0 为空白对照液吸光度,即只加入硫酸亚铁、水杨酸 - 乙醇、过氧化氢,不加人参花蕾提取液 Y_1 的吸光度; A_X 为加入硫酸亚铁、水杨酸 - 乙醇、过氧化氢、人参花蕾提取液 Y_1 后的吸光度; A_{X0} : 加入硫酸亚铁、水杨酸 - 乙醇、人参花蕾提取液 Y_1 ,不加过氧化氢引发反应的吸光度,即本底吸光度。

操作要点为: 首先在比色管 A_0 、 A_x 、 A_{x0} 中分别加入 9mmol/L 的硫酸亚铁 2ml、9mmol/L 的水杨酸 - 乙醇 2ml,摇匀;在 A_0 试管中加入 8.8mmol/L 的过氧化氢 2ml 摇匀;在 A_x , A_{x0} 管中分别加入人参花蕾提取液 Y_1 (0.25、0.5、0.75、1.0、1.25、1.50ml);在 A_x 管中分别加入 8.8mmol/L 的过氧化氢 2ml,摇匀;最后在 A_0 、 A_x 、 A_{x0} 管中分别加入 8ml pH3.8 的醋酸 - 醋酸钠缓冲溶液,用蒸馏水定容到 25ml。于 37 $\mathbb C$ 水浴加热 30min,取出后冷却到室温,静置 10 min。以蒸馏水为参比,于波长 510nm 处分别测定吸光度。

2 结果与分析

- 2.1 人参皂苷提取结果与分析
- 2.1.1 标准曲线与线性回归方程

表 1 Re 标准曲线测定数据
Table 1 Data for Re standard curve

项目	人参皂苷 Re 标准物溶液(2μg /μl)						
	1	2	3	4	5		
Re 标准物体积(µl)	50	75	100	125	150		
Re 标准物质量(µg)	100	150	200	250	300		
5% 香草醛冰醋酸(ml)	0.20	0.20	0.20	0.20	0.20		
高氯酸(ml)	0.80	0.80	0.80	0.80	0.80		
冰醋酸(ml)	10.00	10.00	10.00	10.00	10.00		
$A_{550\mathrm{nm}}$	0.196	0.281	0.391	0.441	0.610		

由表 1 可求得,a=0.002,b=-0.0114,可得线性 回归方程为 y=0.002x-0.0114。标准曲线见图 1。

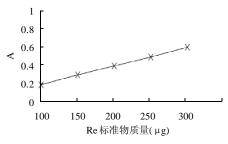


图 1 Re 标准物质标准曲线 Fig.1 Re standard curve

2.1.2 人参皂苷提取

表 2 提取液 Y₁ 浓度 Table 2 Concentrations of extraction solution Y₁

测定编号	1	2	3
加入提取液体积(µl)	20	20	20
5% 香草醛冰醋酸(ml)	0.20	0.20	0.20
高氯酸(ml)	0.80	0.80	0.80
冰醋酸(ml)	10.00	10.00	10.00
A550nm	0.471	0.482	0.489
皂苷质量(μg)	241.2	246.7	250.2
皂苷浓度(µg/µl)	12.06	12.34	12.51
Υι平均浓度(μg/μl)		12.30	
人参花蕾中人参皂苷提取率 T(%)		8.17	

注: 制备 Y1 人参花蕾总质量 6.00g; Y1 定容后总体积 40.00ml。

人身皂苷的测定结果见表 2。用 50%的乙醇回流、80℃水浴的方法^[11]从人参根中提取人参皂苷得率为 4.29%。本实验用相同方法从人参花蕾中提取人参皂苷的提取率为 8.17%,说明人参花蕾中的总皂苷含量大于人参根。

2.1.3 回收率测定

由表 3 可见,用 50% 的乙醇提取人参花蕾中人参皂苷的回收率比较高。因此,本实验从人参花蕾中提取 人参皂苷的方法可靠、实用。

2.2 人参花蕾提取液体外清除羟基自由基的能力测定

表 3 回收率相关数据 Table 3 Recovery rate data

16日	提取液 Y2			提取液 Y3			
项目 	1	2	3	1	2	3	
人参花蕾质量(g)		1.0034			1.0034		
Re标准物质量(g)		0			0.0023		
总质量(g)		1.0034	1.0034 1.0057				
定容后总体积(ml)	5.50 5.50						
提取液体积 V _ι (μl)		20	20				
5% 香草醛冰醋酸(ml)		0.20		0.20			
高氯酸(ml)	0.80						
冰醋酸(ml)		10.00		10.00			
A550nm	0.581	0.582	0.578	0.591	0.611	0.586	
皂苷质量(μg)	296.2	296.7	294.7	301.2	.2 311.2 29		
质量平均值(μg)		295.9 303.7					
平均浓度(μg/μl)		14.80			15.19		
回收率(%)		93.6			93.6		

取不同体积的人参花蕾提取液 Y_1 ,分别测定 A_X 、 A_{X0} ,计算不同体积提取液 Y_1 清除羟基自由基的能力,结果见表 4。

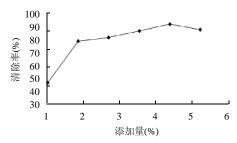


图 2 人参花蕾提取物添加量与清除羟基自由基效果的关系 Fig.2 Relationship of scavenging effect with addition amount ginseng flowers extract

由表 4、图 2 可见,人参花蕾提取液清除羟基自由基的效果随着添加量的增加而增大。即人参花蕾提取液添加量增加,Ax-Axo的差值越小,[Ao-(Ax-Axo)]/Ao值越大,清除羟基自由基的能力越强。提取液加入量

表 4 不同体积提取液 Y₁ 清除羟基自由基的能力

Table 4 Abilities for scavenging hydroxy free radical of extraction Y₁ with variable volume

不同体积提取液	清除•OH 能力						
硫酸亚铁体积(ml)	2.00						
水杨酸 - 乙醇体积(ml)	2.00						
过氧化氢体积(ml)	$2.00(A_{x0}=0)$						
pH3.8 的缓冲液体积(ml)	8.00						
蒸馏水定容体积(ml)	25.00						
提取液 Yι浓度体积(μg/μl)	12.30						
Ax、Axo 中分别加入提取液 Y1 体积(ml)	0	0.25	0.50	0.75	1.00	1.25	1.50
Ax、Ax ₀ 中提取液 Y ₁ 百分含量(%)	0	1.00	2.00	3.00	4.00	5.00	6.00
A ₀ (510nm)	0.373	_	_	_	_	_	_
Ax(510nm)	_	0.547	0.646	0.730	0.812	0.850	0.915
Ax0(510nm)	_	0.346	0.564	0.658	0.760	0.816	0.866
$[A_0 - (A_X - A_{X0})]/A_0 \times 100$	_	46.11	78.02	80.70	86.06	90.88	86.86

在 $0.25\sim0.50$ ml 即 $1.00\%\sim2.00\%$ 之间,羟基自由基的清除率增加的比较明显;提取液加入量在 $0.50\sim1.25$ ml 即 $2.00\%\sim5.00\%$ 之间,羟基自由基清除率虽呈递增趋势,但幅度不大;提取液加入量在 $1.25\sim1.50$ ml 即 $5.00\%\sim6.00\%$ 之间,羟基自由基清除率有所下降。其原因是 Fe^{2+} 也可以与显色剂形成络合物,具有一定的颜色和吸光度,增大了 Ax 值,而本底值 Ax_0 的影响减弱, $[A_0-(Ax-Ax_0)]/A_0$ 值相应变小。

因此,人参花蕾提取液清除羟基自由基添加量的有效范围为1.00%~5.00%,添加量5.00%左右清除羟基自由基能力最强。

3 结论

- 3.1 人参花蕾中人参皂苷提取率为8.17%,高于人参根(4.29%)。
- 3.2 乙醇回流法可以有效的从人参花蕾中提取人参皂 苷,方法稳定、可靠。提取条件为50% 乙醇、固液

比1:20、回流提取温度83℃、回流4次、每次2.5h。加入标准人参皂苷Re,回收率为93.26%。

3.3 人参花蕾提取物具有较强的清除羟基自由基能力。随着提取液加入量的增加,对羟基自由基的清除率增大。常温常压下加入5.00%人参花蕾提取液(12.30 μg/μl),清除羟基自由基能力最强。

参考文献:

- [1] 陈长武, 张利财. 人参花可乐保健饮料的研制[J]. 饮料工业, 2007, 10(6): 39-41.
- [2] 王健梅.欧科学家发现人参花蕾的药用价值远超过人参[J]. 中国农业信息, 2005(3): 17.
- [3] 张晶, 陈全成, 弓晓杰, 等.不同提取方法对人参皂苷提取率的影响 [J]. 吉林农业大学学报, 2003,25(1):71-73.
- [4] 马利华, 贺菊萍, 秦卫东, 等. 槐花提取物抗氧化性能研究[J]. 食品 科学, 2007, 28(9): 75-77.
- [5] 崔巍, 赵洪艳, 王燕嬉. 人参皂甙抗衰老的研究进展[J]. 中国老年学 杂志, 2006, 26(11): 1578-1580.
- [6] 李治国, 董里, 史惠祥, 等. Fenton 试剂处理 2,4-D 废水研究[J]. 浙江 大学学报: 理学版, 2004, 31(4): 442-443.