高纯度亚麻木酚素的分离纯化和分析

王 尉1,贺天雨1,赵新颖1,*,席兴军2,兰 韬2,杜 宁1,张经华1

(1.北京市理化分析测试中心,北京 100089;2.中国标准化研究院,北京 100191)

摘 要:开展高纯度亚麻木酚素的分离纯化和分析方法研究,选取亚麻籽为研究对象,通过正己烷脱脂、乙醇提取、AB-8大孔吸附树脂分离、高速逆流色谱(high-speed countercurrent chromatography,HSCCC)纯化制备得到高纯度亚麻木酚素。其中,大孔吸附树脂的洗脱溶剂为80%乙醇溶液,HSCCC溶剂体系为叔丁基甲醚-正丁醇-乙腈-水(1∶3∶1∶5,V/V)。实验分离得到的亚麻木酚素经薄层色谱、高效液相色谱-二极管阵列检测器-蒸发光散射检测器联用和高效液相色谱-质谱联用进行纯度分析,结果显示杂质质量分数低于0.5%。通过采用多种高效液相色谱条件分析,峰面积归一化法进行纯度计算,其纯度在99.3%~99.5%之间。最后采用紫外光谱、红外光谱、高分辨质谱、核磁共振波谱和元素分析等方法鉴定其结构为亚麻木酚素。结果表明,该分离纯化方法简单可行,纯度分析方法准确可靠,制备得到的样品具有纯度高的优点,可以应用于相关产品的质量控制和方法验证。

关键词:亚麻籽;木酚素;分离纯化;纯度分析;结构鉴定

亚麻(Linum usitatissimum L.)又称胡麻,与花生、大豆等同属重要的油料作物[1],其种子、种皮中木酚素含量最高,约为其他植物的75~800 倍[2]。同时,亚麻还是重要的纤维制造原料之一,因此作为重要的生产和生活材料,人们对于亚麻的研究十分重视且从未间断。自1956年Bakke等[3]首次将亚麻木酚素从亚麻籽中分离出来,科技工作者便对亚麻的药用价值进行了系统深入的研究。据报道,亚麻木酚素具有较强的抗氧化活性[4-6]和抗炎作用[7],对糖尿病[8-9]、心血管疾病[10-12]、肾脏病[13-14],尤其是对于乳腺癌[15-20]、经期综合征、骨质疏松[21-22]等雌激素依赖性疾病有较好的预防作用。近年来,亚麻木酚素提取物产品已经广泛用于胶囊压片、谷物早餐和快餐食品的添加剂[23]。因此,开发高效、简单的高纯度亚麻木酚素分离分析技术对于充分发挥亚麻的应用价值具有重要的意义。

目前,亚麻木酚素的制备工艺多集中于提取方法及大孔吸附树脂纯化等方面的研究[24-27],其制备所得的亚麻木酚素纯度不高,鲜有高纯度亚麻木酚素分离纯化的报道。此外,亚麻木酚素的纯度或含量的分析方法也仅限于单一条件的高效液相色谱(high performance liquid chromatography,HPLC)法或紫外分光光度法等[1],并不能全面、准确反映样品中杂质含量的情况。本研究通过正己烷脱脂、乙醇提取、大孔吸附树脂初步分离、高速逆流色谱(high-speed countercurrent chromatography,HSCCC)纯化等方法制备得到高纯度的亚麻木酚素,方法简单可行;综合利用薄层色谱(thin layer chromatography,TLC)以及多种HPLC条件和联用技术进行纯度分析,结果准确可靠。最后通过紫外光谱(ultraviolet spectrum,UV)、红外光谱(infrared spectrum,IR)、高分辨质谱(high-resolution mass spectrometry,HRMS)、核磁共振波谱(nuclear magnetic resonance spectroscopy,NMR)和元素分析等方法对亚麻木酚素进行结构鉴定。

图 1 亚麻木酚素的化学结构式
Fig. 1 Chemical formula of flax lignan

1 材料与方法

1.1 材料与试剂

干燥亚麻籽 市售。

正己烷、乙醇、叔丁基甲醚、正丁醇、氯仿、乙腈、氢氧化钠、盐酸、硫酸(均为分析纯) 国药集团化学试剂有限公司;乙腈(色谱纯) 美国Fisher Scientific科技公司。

1.2 仪器与设备

TBE-300B高速逆流色谱仪 上海同田生物技术有限公司;LC-20A HPLC系统(配SPD-M20A和ELSD-LTII检测器)、UV-1800紫外-可见分光光度计 日本岛津公司;PerkinElmer spectrum 400傅里叶变换红外-近红外光谱仪 美国珀金埃尔默公司;Q Exactive Orbitrap质谱仪美国Thermo公司;DD2 600 MHz超导核磁共振谱仪美国Aglient公司;Vario EL III全自动元素分析仪 德国Elementar公司。

1.3 方法

1.3.1 亚麻木酚素的提取及分离纯化

1.3.1.1 样品的提取

将亚麻籽粉碎后过40 目筛,称取100.0 g按照料液比1∶20(g/mL)加入正己烷,室温浸泡脱脂6 h。对脱脂后的样品按料液比1∶20(g/mL)加入乙醇,超声波辅助提取3 次,离心分离,合并上清液。在上清液中加入6 mol/L NaOH溶液至最终NaOH浓度为0.25 mol/L,室温碱解2 h后,加入6 mol/L HCl溶液中和至pH 4.0,旋转蒸发去除乙醇,可得亚麻籽水解物9.6 g。

1.3.1.2 分离纯化

首先,采用AB-8大孔吸附树脂对亚麻籽水解物进行初步分离,依次使用蒸馏水和80%乙醇溶液洗脱,收集80%乙醇溶液洗脱产物,旋转蒸发去除溶剂,可得亚麻籽初步分离样品105 mg。然后,采用HSCCC对该样品进行纯化,溶剂体系为叔丁基甲醚-正丁醇-乙腈-水(1∶3∶1∶5,V/V),转速900 r/min,流速1.2 mL/min,分离温度25 ℃,检测波长280 nm。根据HSCCC图谱收集目标化合物,旋转蒸发去除溶剂,冷冻干燥后得到高纯度亚麻木酚素样品58 mg。

1.3.2 纯度分析

1.3.2.1 TLC纯度分析

分别采用两种展开条件对亚麻籽提取物和亚麻木酚素进行TLC纯度分析,展开剂分别为乙酸乙酯-甲醇-水-甲酸(77∶13∶10∶5,V/V)和氯仿-甲醇-乙酸(8∶4∶0.5,V/V),显色剂为5%硫酸-乙醇溶液,喷洒后于105 ℃加热显色。

1.3.2.2 多种HPLC条件纯度分析

在流动相A为乙腈,B为1%甲酸,流速1.0 mL/min、柱温35 ℃条件下,对HPLC洗脱条件、不同色谱柱、高效液相色谱-二极管阵列检测器-蒸发光散射检测器(high performance liquid chromatography-diode array detectorevaporative light scattering detector,HPLC-DAD-ELSD)联用等方法对亚麻木酚素进行纯度分析,并采用峰面积归一化法计算纯度。

1.3.2.3 HPLC-MS联用纯度分析

采用HPLC-MS的正、负离子模式对亚麻木酚素进行纯度分析。HPLC条件:色谱柱:ACQUITY UPLC(2.1 mm×100 mm,1.7 μm);流动相:A为乙腈,B为0.3%甲酸,0~10 min,20% A;流速:0.2 mL/min;柱温:35 ℃;运行时间:10 min。MS条件:锥孔气流速40 L/min;毛细管电压3.0 kV;脱溶剂温度320 ℃;质量扫描范围m/z 150~2 000。

1.3.3 结构鉴定

对分离纯化后的样品通过UV、IR、HRMS、NMR和元素分析进行结构鉴定。UV分析条件:甲醇作为溶剂,扫描范围200~400 nm;IR分析条件:KBr压片法,扫描范围400~4 000 cm-1;MS分析条件同HPLC-MS联用纯度分析;NMR分析条件:氘代溶剂为氘代甲醇(CD3OD),采集13C-NMR和1H-NMR图。

2 结果与分析

2.1 亚麻木酚素的提取及分离纯化

首先,对粉碎后亚麻籽样品采用正己烷脱脂、乙醇超声波辅助提取得到亚麻籽提取物样品。由于亚麻籽中部分亚麻木酚素会与3-羟基-3-甲基-戊二酸形成络合物[28-29],为提高提取效率,采用碱水解[30-31]的方式有利于释放更多亚麻木酚素成分,故通过NaOH碱水解,HCl中和后制备得到亚麻籽水解物。然后,对该样品采用AB-8大孔吸附树脂初步分离,收集80%乙醇洗脱产物得到亚麻籽初步分离样品。最后,采用HSCCC叔丁基甲醚-正丁醇-乙腈-水(1∶3∶1∶5,V/V)溶剂体系纯化得到亚麻木酚素样品(图2),对以上得到的亚麻籽提取物、亚麻籽初步分离、亚麻木酚素3 个样品经HPLC分析,采用峰面积归一法计算纯度,其纯度分别为8.7%、90.1%、99.4%(图3)。

图 2 亚麻木酚素的HSCCC图
Fig. 2 HSCCC chromatogram of flax lignan

图 3 亚麻木酚素的HPLC图
Fig. 3 HPLC chromatograms of flax lignan

2.2 纯度分析

2.2.1 TLC纯度分析

分别采用两种展开条件对亚麻籽提取物(图4,点样位置1)和3 种浓度样品亚麻木酚素(图4,点样位置2、3、4)进行TLC纯度分析。展开剂为乙酸乙酯-甲醇-水-甲酸(77∶13∶10∶5,V/V)的Rf值为0.36,展开剂为氯仿-甲醇-乙酸(8∶4∶0.5,V/V)的Rf值为0.60,通过实验结果可知,未在TLC谱图中发现其他杂质斑点,表明分离纯化所得亚麻木酚素的纯度较高。

图 4 亚麻木酚素的TLC图
Fig. 4 TLC analysis of flax lignan

2.2.2 多种HPLC条件纯度分析

为全面反映杂质的情况,需要采用多种HPLC条件对目标物进行分析。本实验比较恒定洗脱、梯度洗脱、色谱柱类型、HPLC-DAD-ELSD联用的方法,并采用峰面积归一化法对亚麻木酚素进行纯度分析,结果见表1。实验结果表明,多种方法测得的目标物纯度基本一致,均高于99%,其中HPLC-DAD-ELSD联用谱图见图5、6。

表 1 不同HPLC条件分析结果
Table 1 Results of HPLC analysis under different conditions

注:流动相A为乙腈,B为1%甲酸溶液。—.无明显杂质峰。

相同色谱条件 不同色谱条件 纯度/%色谱分离柱:Neptune C18(250 mm×4.6 mm,5 μm);检测波长280 nm恒定洗脱 0~25 min,20% A;洗脱时间15 min 99.4梯度洗脱 0~65 min,10%~90% A;洗脱时间65 min 99.3 0~20 min,15% A;洗脱时间20 min;检测波长280 nm色谱分离柱1 Waters XBridge C18(250 mm×4.6 mm,5 μm) 99.5色谱分离柱2 Diamonsil C18(250 mm×4.6 mm,5 μm) 99.3色谱分离柱:Neptune C18(250 mm×4.6 mm,5 μm);0~65 min,10%~90% A DAD 检测波长200~800 nm —ELSD 漂移管温度40 ℃,载气压力350 kPa 99.5

图 5 亚麻木酚素的DAD谱图
Fig. 5 DAD spectrum of flax lignan

图 6 亚麻木酚素的ELSD色谱图
Fig. 6 ELSD chromatogram of flax lignan

图 7 亚麻木酚素的总离子流色谱图
Fig. 7 Total ion current chromatograms of flax lignan

2.2.3 HPLC-MS联用纯度分析采用正、负离子两种模式对亚麻木酚素进行纯度分析。通过实验结果(图7)可知,未在总离子流谱图中发现其他杂质峰存在。

2.3 结构鉴定结果

表 2 亚麻木酚素的1H-NMR数据
Table 21H-NMR data of flax lignan

1H 测定值 文献[32]参考值 文献[33]参考值5’ 6.59(1H,J=7.8 Hz) 6.64(1H,J=8.2 Hz) 6.61(1H,d,J=8.2 Hz)2’ 6.53(1H,J=1.8 Hz) 6.59(1H,J=1.8 Hz) 6.59(1H,s)6’ 6.51(1H,J=1.8,7.8 Hz) 6.57(1H,J=1.8,8.2 Hz) 6.53(1H,d,J=8.0 Hz)1’’ 4.17(1H,J=7.8 Hz) 4.24(1H,J=7.9 Hz) 4.19(1H,t,J=7.8 Hz)1a 4.01(1H,J=5.4,9.6 Hz) 4.08(1H,J=5.5,10.8 Hz) 4.04(1H,m)1b 3.41(1H,J=9.6,6.6 Hz) 3.48(1H,J=10.8,6.3 Hz) 3.43(1H,d,J=10 Hz)6’’a 3.79(1H,J=12.0,1.8 Hz) 3.86(1H,J=11.9,2.4 Hz) 3.80(1H,m)6’’b 3.68(1H,J=12.0,5.4 Hz) 3.68(1H,J=11.9,5.5 Hz) 3.63(1H,m)3’-OMe 3.67(3H) 3.74(3H) 未给出3’’ 3.30(1H,m) 3.35(1H,J=9.1,9.1 Hz) 3.31(1H,m)4’’ 3.24(1H,m) 3.30(1H,J=9.1,9.4 Hz) 3.21(1H,m)5’’ 3.18(1H,m) 3.24(1H,J=9.4,2.4,5.5 Hz) 3.20(1H,m)2’’ 3.15(1H,m) 3.21(1H,J=7.9,9.1 Hz) 3.15(1H,m)1’a,b 2.55~2.62(2H,J=6.6,7.8 Hz) 2.62~2.69(2H,J=13.8,6.6,7.6 Hz) 2.54~2.67(2H,m)2 2.06(1H,J=6.0,6.6 Hz) 2.13(1H,J=5.5,6.3,6.6,7.6 Hz) 2.13(1H,J=5.5,6.3,6.6,7.6 Hz)

表 3 亚麻木酚素的13C-NMR数据
Table 313C-NMR data of flax lignan

13C 测定值 文献[32]参考值 文献[33]参考值1 71.4 71.3 71.1 2 41.4 41.1 41.1 1’ 35.8 35.6 35.5 1’’ 134.1 134.2 133.9 2’’ 113.8 113.7 113.5 3’’ 148.9 148.9 148.6 4’’ 145.6 145.8 145.3 5’’ 115.9 115.8 115.6 6’’ 123.1 123.1 122.8 OMe 56.5 56.4 56.2 1’’’ 105.0 104.8 104.7 2’’’ 75.5 75.3 75.2 3’’’ 78.4 78.2 78.1 4’’’ 71.9 71.7 71.6 5’’’ 78.1 77.9 77.8 6’’’ 63.0 62.8 62.7

分离纯化后样品经元素分析结果显示:C:56.2%,H:6.5%,与亚麻木酚素的元素组成计算值(C:56.0%,H:6.7%)相符。UV最大吸收波长为281 nm(甲醇溶剂);IR吸收峰为3 406 cm-1(-OH伸缩振动)、2 929 cm-1(C-H伸缩振动)、1 604、1 516、1 430 cm-1(芳环骨架振动)、1 272、1 076、1 031 cm-1(C-O伸缩振动)(图8),UV、IR数据与文献[31]比较,光谱特征一致。如图9所示,HRMS正离子模式给出m/z 709.266 1[M+Na]+(C32H46O16Na精确分子质量计算值:m/z 709.268 4),m/z 327.158 4[M-2glu-2H2O+H]+(C20H23O4精确分子质量计算值:m/z 327.159 6),负离子模式给出m/z 731.276 7[M+COOH]-(C33H47O18精确分子质量计算值:m/z 731.276 2),m/z 685.270 6[M-H]-(C32H45O16精确分子质量计算值:m/z 685.270 8),以上数据均与亚麻木酚素精确分子质量相符。通过1H-NMR和13C-NMR鉴定(表2、3和图10),并与文献[32-33]比较,其核磁谱数据与报道的亚麻木酚素化合物一致,确定该样品为亚麻木酚素。

图 8 亚麻木酚素的UV和IR的光谱图
Fig. 8 UV and IR spectra of flax lignan

图 9 亚麻木酚素的HRMS图
Fig. 9 HRMS spectra of flax lignan

图 10 亚麻木酚素的NMR图
Fig. 10 NMR spectra of flax lignan

3 结 论

本实验建立了从亚麻籽中分离纯化亚麻木酚素的方法,通过大孔吸附树脂和HSCCC两步分离纯化即可得到纯度在99.3%~99.5%之间高纯度亚麻木酚素,方法简单可行。这将有效促进亚麻药理活性的深入研究,推动亚麻木酚素对照品的广泛研制,提升亚麻相关产品的质量品质,进一步提高亚麻作物的经济价值。同时,本研究所采用的多种分析技术组合的纯度分析方法,也对制备其他高纯度天然产物单体具有一定的借鉴作用。

参考文献:

[1] 彭郁, 李茉, 刘冰, 等. 亚麻木酚素提取技术及其检测方法的研究进展[J]. 食品工业, 2016, 37(5): 242-244.

[2] IMRAN M, AHMAD N, ANJUMF M, et al. Potential protective properties of flax lignan secoisolariciresinol diglucoside[J]. The Journal of Nutrition, 2015, 14(1): 1-7. DOI:10.1186/s12937-015-0059-3.

[3] BAKKE J E, KLOSTERMAN H J. A new diglucoside from flaxseed[J]. North Dakota Academy of Science, 1956, 10: 18-22.

[4] 田光晶, 马丛丛, 许继取. 亚麻木酚素对动脉粥样硬化的改善作用研究进展[J]. 中国油脂, 2017, 42(1): 35-39.

[5] MASUDA T, AKIYAMA J, FUJIMOTO A, et al. Antioxidation reaction mechanism studies of phenolic lignans, identifi-cation of antioxidation products of secoisolariciresinol fromlipid oxidation[J].Food Chemical, 2010, 123(2): 442-450.

[6] 李静, 陈冬梅, 陈明星. 亚麻木酚素小鼠体内抗氧化活性研究[J].中国粮油学报, 2012, 12(8): 73-77.

[7] ZANWAR A, HEGDE M, BODHANKAR S. Cardioprotective activity of flax lignanconcentrate extracted from seeds of Linum usitatissimum in isoprenalin induced myocardialnecrosis in rats[J]. Interdisciplinary Toxicol, 2011, 4(2): 90-97.

[8] PAN A, DEMARK-WAHNEFRIED W, YE X, et al. Effects of a flaxseed-derived lignan supplement on C-reactive protein, I L-6 and retinol-binding protein 4 intype 2 diabetic patients[J]. British Journal of Nutrition, 2009, 101(8): 1145-1149.

[9] PRASAD K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat[J]. Journal of Laboratory and Clinical Medicine, 2001, 138(1): 32-39.

[10] PRASAD K. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative to ACE inhibitors in thetreatment of hypertension[J]. International Angiology, 2013, 22(4): 235-238.DOI:10.1055/s-0033-1351687.

[11] RODRIGUEZ-LEYVA D, WEIGHELL W, EDEL A L, et al.Potent antihypertensive action of dietary flaxseed inhypertensive patients[J]. Hypertension, 2013, 62(6): 1081-1089. DOI:10.1161/HYPERTENSIONAHA.113.02094.

[12] HALIGA R, MOCANU V, BADESCE M. Flaxseed havebeneficial effects on endothelial dysfunction and oxidativestress in experimental atherosclerosis[J]. Annals of the Romanian Society for Cell Biology,2013, 8(2): 91-97.

[13] 赵德宝, 戴志刚, 杨学, 等. 亚麻木酚素合成及相关基因的研究进展[J].农业科技通讯, 2015(7): 242-245.

[14] CLARK W F, MUIR A D, WESTCOTT N D, et al. A novel treatment for lupus nephritis: lignan precursor derived from flax[J]. Lupus, 2000,9(6): 429-436.

[15] SCHOTTNER M, SPITELLER G, GANSSER D. Lignans interfering with 5α-dihydrotestosterone binding to human sex hormone-binding globulin[J]. Journal of Natural Products, 1998, 61(1): 119-121.

[16] HERMAN A. Phytoestrogens and breast cancer[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2002, 83(1/2/3/4/5): 113-118.

[17] ALICE L M, GISELA W, SUSAN R D. Phytoestrogens[J]. Journal of Clinical Endocrinology and Metabolism, 1998, 83(2): 297-303.

[18] ZITTERMANN A. Phytoestrogens[J]. Zentralbl Gynakol, 2003,125(6): 195-201.

[19] OSOSKI A L, KENNELLY E J. Phytoestrogens: a review of the present state of research[J]. Phytotherapy Research, 2003, 17(8): 845-869. DOI:10.1002/ptr.1364.

[20] SETCHELL K D, BROWN N M, ZIMMER-NECHEMIAS L, et al.Metabolism of secoisolariciresinol-diglycoside the dietary precursorto the intestinally derived lignan enterolactoneinhumans[J]. Food &Function, 2014, 5(3): 491-501. DQI:10.1039/c3fo60402k.

[21] 张进丽. 亚麻木酚素(SDG)治疗中老年女性骨质疏松症的临床研究[J].中国现代医学杂志, 2013, 23(31): 64-66.

[22] 杨成涛, 赵云令, 孙云, 等. 植物多酚抗骨质疏松作用的研究[J].食品工业科技, 2014, 35(17): 386-389. DOI:10.13386/j.issn1002-0306.2014.17.078.

[23] 梅莺. 亚麻饼木酚素发酵提取工艺研究[D]. 武汉: 油料作物研究所,2013: 2-9.

[24] 冯小慧, 邵文捷, 李国银, 等.亚麻木酚素提取方法研究[J]. 农产品加工: 学刊, 2014(1): 30-31. DOI:10.3969/jissn.1671-9646(X).2014.01.010.

[25] 李会珍, 李娜, 张志军, 等. 响应面法优化超声波辅助亚麻木酚素提取工艺及抗氧化性研究[J]. 中国粮油学报, 2016, 31(8): 62-67.DOI:10.3969/j.issn.1003-0174.2016.08.011.

[26] 徐玉玲, 谭平, 罗小伟, 等. 亚麻油渣提取物制备工艺研究[J].成都大学学报(自然科学版), 2015, 34(2): 111-114. DOI:10.3969/j.issn.1004-5422.2015.02.003.

[27] 杨宏志, 李静. 大孔树脂分离纯化亚麻木酚素工艺[J]. 中国食品学报, 2015, 15(7): 139-146. DOI:10.16429/j.1009-7848.2015.07.020.

[28] 张文斌, 许时婴, 王璋, 等. 亚麻籽中开环异落叶松树脂酚二葡萄糖苷的测定-高效液相色谱-二极管阵列检测-电喷雾质谱法[J]. 浙江大学学报(农业与生命科学版), 2008, 34(5): 564-570. DOI:10.3785/j.issn.1008-9209.2008.05.013.

[29] KAMAL-ELDIN A, PEERLKAMP N, JOHNSSON P, et al. An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues[J]. Phytochemistry,2001, 58(4): 587-590.

[30] OOMAH B D, MAZZA G. Fractionation of flaxseed with a batch dehuller[J]. Industrial Crops and Products, 1998, 9: 19-27.

[31] 张文斌. 亚麻木酚素的提取纯化与生物活性研究[D]. 无锡: 江南大学, 2007: 29-30. DOI:10.7666/d.y1195875.

[32] STEFANO C, MASSIMO B, SILVIA A, et al. Complete assignment of the1H and13C NMR spectra of secoisolariciresinol diglucoside, a mammalian lignan precursor isolated from Linum usitatissimum[J].Magnetic Resonance in Chemistry, 1999, 37: 860-863.

[33] 张腾, 张崇禧, 黄建军. 亚麻籽水解物化学成分研究及SDG含量测定[J]. 食品科技, 2012, 37(7): 271-275. DOI:10.13684/j.cnki.spkj.2012.07.050.

Preparation and Characterization of Highly Pure Flax Lignan from Flaxseeds

WANG Wei1, HE Tianyu1, ZHAO Xinying1,*, XI Xingjun2, LAN Tao2, DU Ning1, ZHANG Jinghua1
(1. Beijing Center for Physical and Chemical Analysis, Beijing 100089, China;2. China National Institute of Standardization, Beijing 100191, China)

Abstract: Highly pure flax lignan was prepared from flaxseeds by n-hexane defatting, ethanol extraction, AB-8 macroporous resin separation and high-speed countercurrent chromatography (HSCCC) purification. Flax lignan was eluted with 80%ethanol from AB-8, and the HSCCC solvent system was composed of tert-butyl methyl ether, n-butanol, acetonitrile and water (1:3:1:5, V/V). The results showed that the impurity content was less than 0.5%, as detected by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), HPLC-DAD-ELSD and HPLC-MS. The purity of flax lignan was between 99.3%-99.5%, as calculated by peak area normalization under various HPLC conditions. The structure was identified by ultraviolet spectroscopy (UV), infrared spectroscopy (IR), high-resolution mass spectrometry(HRMS), nuclear magnetic resonance (NMR) and elemental analysis. The purification method proved to be simple and feasible, and the methods used for purity analysis were accurate and reliable. The flax lignin prepared in this study is enough pure to be used in method validation and quality control.

Keywords: flaxseed; lignan; purification; purity analysis; structural identification

收稿日期:2018-03-02

基金项目:“十三五”国家重点研发计划重点专项(2017YFF0207800)

第一作者简介:王尉(1984—)(ORCID: 0000-0002-4753-518X),男,副研究员,硕士,研究方向为天然产物分离纯化。E-mail: wangwei_1217@126.com

*通信作者简介:赵新颖(1981—)(ORCID: 0000-0003-1253-5697),女,副研究员,博士,研究方向为分析化学。E-mail: zhaoxinying_123@sina.com

DOI:10.7506/spkx1002-6630-20180302-016

中图分类号:TS272.7

文献标志码:A

文章编号:1002-6630(2019)08-0149-06

引文格式:

王尉, 贺天雨, 赵新颖, 等. 高纯度亚麻木酚素的分离纯化和分析[J]. 食品科学, 2019, 40(8): 149-154. DOI:10.7506/

spkx1002-6630-20180302-016. http://www.spkx.net.cn

WANG Wei, HE Tianyu, ZHAO Xinying, et al. Preparation and characterization of highly pure flax lignan from flaxseeds[J].Food Science, 2019, 40(8): 149-154. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-20180302-016.http://www.spkx.net.cn