食品科学 ›› 0, Vol. ›› Issue (): 0-0.
• 专题论述 • 下一篇
赵钰博1,张浪1,陈倩1,孔保华1,刁新平2
收稿日期:
2022-03-20
修回日期:
2023-02-03
出版日期:
2023-03-15
发布日期:
2023-03-23
通讯作者:
孔保华
E-mail:kongbh@163.com
基金资助:
Received:
2022-03-20
Revised:
2023-02-03
Online:
2023-03-15
Published:
2023-03-23
摘要: 3D打印技术虽然在材料、打印机和工艺方面取得了重大进步,但目前其只能用于打印静态结构。4D打印技术作为3D打印技术的延伸,可以促使打印材料的结构、形状以及功能随时间的变化而发生改变,从而实现打印材料由静态结构向动态结构的转变。4D打印技术作为来新兴的数字化生产技术,其早期主要应用于医学和工业领域。近几年,4D打印技术逐渐在食品领域得到了一些应用。通过4D打印可以设计并生产出营养价值更高、感官品质更佳的新型食品。本文综述了4D打印食品技术的原理、影响因素以及打印设备,并进一步地论述了4D打印技术在食品领域的最新进展及其优势,最后展望了4D打印食品技术的发展前景。
中图分类号:
赵钰博 张浪 陈倩 孔保华 刁新平. 4D打印技术在食品加工领域的研究进展[J]. 食品科学, 0, (): 0-0.
[1]VIJAYAVENKATARAMAN S, YAN WC, LU WF, et al. 3D bioprinting of tissues and organs for regenerative medicine[J]. Advanced Drug Delivery Reviews. 2018, 32: 296-332. DOI:10.1016/j.addr.2018.07.004.[2]I?TEN E, PUROHIT H S, WALLACE C, et al. Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems[J]. International Journal of Pharmaceutics, 2017, 524(1-2): 424-432. DOI:10.1016/j.ijpharm.2017.04.003.[3]SIMON, FORD, LETIZIA, et al. The emergence of additive manufacturing: Introduction to the special issue[J]. Technological Forecasting and Social Change, 2016, 102: 156-159. DOI:10.1016/j.techfore.2015.09.023.[4]刘珌卿, 刘国庆. 3D打印技术在汽车制造与维修领域应用研究[J]. 产业创新研究, 2020(20): 32-33. DOI:10.16638/j.cnki.1671-7988.2021.010.064.[5]TRUBY R L, LEWIS J A. Printing soft matter in three dimensions[J]. Nature, 2016, 540(7633): 371-378. DOI:10.1038/nature21003.[6]JIANG H, ZIEGLER H, ZHANG Z, et al. Mechanical properties of 3D printed architected polymer foams under large deformation[J]. Materials & Design, 2020, 194(10): 108946. DOI:10.1016/j.matdes.2020.108946.[7]KIM S C, KIM M, AHN N. 3D printer scheduling for shortest time production of weapon parts[J]. Procedia Manufacturing, 2019, 39: 439-446. DOI:10.1016/j.promfg.2020.01.451.[8]LEIST S K, & ZHOU J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials[J]. Virtual and Physical Prototyping, 2016, 11: 249-262. DOI:10.1080/17452759.2016.1198630.[9]SHAN H, LU S W, JIANG L Z, et al. Gelation property of alcohol-extracted soy protein isolate and effects of various reagents on the firmness of heat-induced gels[J]. International Journal of Food Properties, 2015, 18: 627-637. DOI:10.1080/10942912.2013.850508.[10]LIU Z, ZHANG, M., YANG, C, et al. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel[J]. LWT-Food Science and Technology, 2018, 96: 589-596. DOI:10.1016/j.lwt.2018.06.014.[11]AN Y J, GUO, ZHANG M, et al. Investigation on characteristics of 3D printing using nostoc sphaeroides biomass[J]. Journal of the Science of Food and Agriculture, 2019, 99(2): 639-646. DOI:10.1002/jsfa.9226.[12]CHEN F, ZHANG M, LIU Z, et al. 4D deformation based on double-layer structure of the pumpkin/paper[J]. Food Structure, 2020, 27(2): 100168. DOI:10.1016/j.foostr.2020.100168.[13]CHANG H, MIN Z, SD D. Microwave-induced deformation behaviors of 4D printed starch-based food products as affected by edible salt and butter content[J]. Innovative Food Science & Emerging Technologies, 2021, 70: 102699. DOI:10.1016/j.ifset.2021.102699.[14]DUIGOU A L, CORREA D, UEDA M, et al. A review of 3D and 4D printing of natural fibre biocomposites[J]. Materials & Design, 2020, 194: 108911. DOI:10.1016/j.matdes.2020.108911.[15]CHOI JIN, KWONO CHANG, JOWON JIN, et al. 4D printing technology: a review[J]. 3D Printing and Additive Manufacturing, 2015, 2: 159-167. DOI:10.1089/3dp.2015.0039.[16]COMBER R, GANGLBAUER E, CHOI J, et al. Food and interaction design: designing for food in everyday life[M]. Human Factors in Computing Systems, 2012, 2767-2770. DOI:10.1016/j.ijhcs.2013.09.001.[17]CHEN J, ZHANG M, DEVAHASTIN S. UV-Cirradiation-triggered nutritional change of 4D printed ergosterol-incorporated purple sweet potato pastes: conversion of ergosterol into vitamin D2[J]. Lebensmittel-Wissenschaft & Technologie, 2021, 150: 111944. DOI:10.1016/j.lwt.2021.111944.[18]RABIE A. The emergence of 3-D printing[J]. Xrds: Crossroads the Acm Magazine for Students, 2016, 22(3): 79-79. DOI:10.1145/2893521.[19]MOMENI F, SEYED M, XUN L, et al. A review of 4D printing[J]. Materials & Design, 2017, 122: 42-79. DOI:10.1016/j.matdes.2017.02.068.[20]YUAN S L, WAN T S, TAN L P, et al. 4D printing and stimuli-responsive materials in biomedical aspects[J]. Acta Biomaterialia, 2019, 92: 19-36. DOI:10.1016/j.actbio.2019.05.005.[21]AHMED A, ARYA S, GUPTA V, et al. 4D printing: fundamentals, materials, applications and challenges[J]. Polymer, 2021, 228(10): 123926. DOI:10.1016/j.polymer.2021.123926.[22]LIPTON J I, CUTLER M, NIGL F, et al.?Additive manufacturing for the food industry[J]. Trends In Food Science & Technology, 2015, 43(1): 114-123. DOI:10.1016/j.tifs.2015.02.004.[23]刘倩楠, 张春江, 张良, 等. 食品3D打印技术的发展现状[J]. 农业工程学报, 2018, 34(16): 265-273. DOI:10.11975/j.issn.1002-6819.2018.16.034.[24]SUN J, ZHOU W, YAN L, et al. Extrusion-based food printing for digitalized food design and nutrition control[J]. Journal of Food Engineering, 2018, 220: 1-11. DOI:10.1016/j.jfoodeng.2017.02.028.[25]TENG X, ZHANG M, BHANDRI B. 3D printing of cordyceps flower powder[J]. Journal of Food Process Engineering, 2019, 42(15): 13179. DOI:10.1111/jfpe.13179.[26]GUO C, ZHANG M, BHANDARI B. Model building and slicing in food 3D printing processes: a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 1052-1069. DOI:10.1111/1541-4337.12443.[27]J MARTíNEZ-MONZó, J CáRDENAS, P GARCíA-SEGOVIA. Effect of temperature on 3D printing of commercial potato puree[J]. Food Biophysics, 2019, 14(3): 225-234. DOI:10.1007/s11483-019-09576-0.[28]CHANG H A, MIN Z, CGA C. 4D printing of mashed potato/purple sweet potato puree with spontaneous color change[J]. Innovative Food Science & Emerging Technologies, 2020, 59: 102250. DOI:10.1016/j.ifset.2019.102250.[29]HUANG Z, ZHENG X, LI J, et al. The design of colorful 3D printer fused deposition modeling[J]. Modern Manufacturing Engineering, 2018, (01): 35-39. DOI:10.16731/j.cnki.1671-3133.2018.01.008.[30]ROACH D J, HAMEL C M, DUNN C K, et al. The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures[J]. Additive Manufacturing, 2019, 29: 100819. DOI:10.1016/j.addma.2019.100819.[31]DEMOLY F, TOUSSAINT L, EYNARD B, et al. Geometric skeleton computation enabling concurrent product engineering and assembly sequence planning[J]. Computer Aided Design, 2011, 43(12): 1654-1673. DOI:10.1016/j.cad.2011.09.006.[32]DEMOLY F, ROTH S. Knowledge-based parametric CAD models of configurable biomechanical structures using geometric skeletons[J]. Computers in Industry, 2017, s 92-93: 104-117. DOI:10.1016/j.compind.2017.06.006.[33]SOSSOU G, DEMOLY F, H BELKEBIR, et al. Design for 4D printing: a voxel-based modeling and simulation of smart materials[J]. Materials & Design, 2019, 175: 107798. DOI:10.1016/j.matdes.2019.107798.[34]SPIAZZI E, MASCHERONI R. Mass transfer model for osmotic dehydration of fruits and vegetables-I. development of the simulation model[J]. Journal of Food Engineering, 1997, 34(4): 387-410. DOI:10.1016/S0260-8774(97)00102-7.[35]CHUNG S, SONG S E, CHO Y T. Effective software solutions for 4D printing: a review and proposal[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3): 359-371. DOI:10.1007/s40684-017-0041-y.[36]LARSEN, LOREN, HARROLD, et al. Slicing object-oriented software[J]. Proc.intl Conf.softw.eng, 1996: 495-505. DOI:10.1109/ICSE.1996.493444.[37]ZHAO, QIAN W, BYA C, et al. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing[J]. Innovative Food Science & Emerging Technologies, 2020, 67(6): 102546. DOI:10.1016/j.ifset.2020.102546.[38]CAO H, FAN D, JIAO X, et al. Intervention of transglutaminase in surimi gel under microwave irradiation[J]. Food Chemistry, 2018, 268(12): 378-385. DOI:10.1016/j.foodchem.2018.06.067.[39]郭超凡. 重组果蔬及其混合凝胶体系的微波高效3D/4D打印研究[D]. 无锡: 江南大学, 2021: 23-25. DOI: 10.27169/d.cnki.gwqgu.2021.001938.[40]YSA C, MIN Z, Pp A. Microwave-induced spontaneous deformation of purple potato puree and oleogel in 4D printing[J]. Journal of Food Engineering, 2021, 313: 110757. DOI:10.1016/j.jfoodeng.2021.110757.[41]RAKESH V, DATTA A. Microwave puffing: mathematical modeling and optimization[J]. Procedia Food Science, 2011, 1(1): 762-769. DOI:10.1016/j.profoo.2011.09.115.[42]POMPE R, BRIESEN H, DATTA A K. Understanding puffing in a domestic microwave oven[J]. Journal of Food Process Engineering, 2020, 43(7): e13429. DOI:10.1111/jfpe.13429 .[43]TYSEN A, VOMHOFF H, NILSSON L. Through air drying assisted by infrared radiation: the influence of radiator power on drying rates and temperature[J]. Nordic Pulp & Paper Research Journal, 2018, 33(4): 581-591. DOI:10.1515/npprj-2018-2002.[44]ARF A, LSA B, Ad C, et al. Sensory design in food 3D printing-structuring, texture modulation, taste localization, and thermal stabilization[J]. Innovative Food Science & Emerging Technologies, 2021, 72(1): 102743. DOI:10.1016/j.ifset.2021.102743.[45]DICK A, GAO Y, BHANDARI B, et al. Influence of drying method and 3D design on the 4D morphing of beef products[J]. Applied Food Research, 2021, 1(2): 100017. DOI:10.1016/j.afres.2021.100017.[46]SHENG D, RAVI P, TAM K C. pH-Responsive polymers: synthesis, properties and applications[J]. Soft Matter, 2008, 4(3): 435-449. DOI:10.1039/b714741d.[47]ARIZAGA A, IBARZ G, P?OL R. Stimuli-responsive poly(4-vinyl pyridine) hydrogel nanoparticles: Synthesis by nanoprecipitation and swelling behavior[J]. J Colloid Interface, 2010, 348(2): 668-672. DOI:10.1016/j.jcis.2010.05.051.[48]AIC, BJYL, CML, et al. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato - ScienceDirect[J]. Food Chemistry, 2017, 218: 122-128. DOI:10.1016/j.foodchem.2016.09.050.[49]GHAZAL, MIN Z, BB E, et al. Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus[J]. Food Research International, 2021, 142(30): 110215. DOI:10.1016/j.foodres.2021.110215.[50]ORAL M O, DEROSSI A, CAPORIZZI R, et al. Analyzing the most promising innovations in food printing, programmable food texture and 4D foods[J]. Future Foods. 2021, 4:100093. DOI:10.1016/j.fufo.2021.100093.[51]MANTIHAL S, PRAKASH S, GODOI F C, et al. Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling[J]. Innovative Food Science & Emerging Technologies, 2017, 44: 21-29. DOI:10.1016/j.ifset.2017.09.012.[52]PULATSU E, SU J W, LIN J, et al. Factors affecting 3D printing and post-processing capacity of dough[J]. Innovative Food Science & Emerging Technologies, 2020, 61: 102316. DOI:10.1016/j.ifset.2020.102316.[53]CHIEN K B, AGUADO B A, BRYCE P J, et al. In vivo acute and humoral response to three-dimensional porous soy protein scaffolds[J]. Acta Biomaterialia, 2013, 9(11): 8983-8990. DOI:10.1016/j.actbio.2013.07.005.[54]PHUHONGSUNG P, ZHANG M, Bhandari B. 4D printing of products based on soy protein isolate via microwave heating for flavor development[J]. Food Research International, 2020, 137: 109605. DOI:10.1016/j.foodres.2020.109605.[55]KIM H W, LEE J H, PARK S M, et al. Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing[J]. Journal of Food Science, 2018, 83(10-12): 2923-2932. DOI:10.1111/1750-3841.14391.[56]陈瑾. 解读肉类食品添加剂的应用现状与趋势[J]. 食品安全导刊, 2020(03): 77. DOI:10.16043/j.cnki.cfs.2020.03.059.[57]WANG LIN, ZHANG MIN, BHANDARI B, et al. Investigation on fish surimi gel as promising food material for 3D printing[J]. Journal of Food Engineering, 2018, 220(5): 101-108. DOI:10.1016/j.jfoodeng.2017.02.029.[58]KUANG X, ROACH D J, WU J, et al. Advances in 4D Printing: materials and applications[J]. Advanced Functional Materials, 2019, 29(2): 1805290. DOI:10.1002/adfm.201805290.[59]MARTIN B D, LINHARDT R J, DORDICK J S. Highly swelling hydrogels from ordered galactose-based polyacrylates[J]. Biomaterials, 1998, 19(1-3): 69-76.DOI:10.1016/S0142-9612(97)00184-1.[60]MASCHERONI, R H, RODRIGUEZ, et al. Comparison of two alternatives of combined drying to process blueberries (O'Neal): Evaluation of the final quality[J]. Drying technology: An International Journal, 2016, 34(8): 974-985. DOI:10.1080/07373937.2015.1089886.[61]XU TENG, ZHANG M, MUJUMDAR A S. 4D printing: recent advances and proposals in the food sector[J]. Trends in Food Science & Technology, 2021, 110: 349-363. DOI:10.1016/j.tifs.2021.01.076.[62]YANG G, Y TAO, WANG P, et al. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product[J]. LWT-Food Science and Technology, 2021, 154: 112693. DOI:10.1016/j.lwt.2021.112693. |
[1] | 赵钰博,张浪,陈倩,孔保华,刁新平. 4D打印技术在食品加工领域的研究进展[J]. 食品科学, 2023, 44(5): 338-345. |
[2] | 武燕霓,安玥琦,熊善柏. 鱼汤风味的形成与调控研究进展[J]. 食品科学, 2023, 44(15): 251-268. |
[3] | 林柳,曹振海,陶宁萍,苗军舰,王锡昌. 南极磷虾油氧化稳定性及调控方法研究进展[J]. 食品科学, 2023, 44(15): 310-328. |
[4] | 李梦杰,胡坦,潘思轶. 食品体系组成及加工方式对植物次生代谢物生物利用度的影响研究进展[J]. 食品科学, 2022, 43(5): 328-337. |
[5] | 梁胜男,赵丽娜,陈庆学,赵莉,史佳鹭,岳莹雪,关嘉琦,李柏良,霍贵成. 生命早期肠道菌群的建立和变化及对婴儿健康的影响[J]. 食品科学, 2022, 43(5): 392-400. |
[6] | 杨姗,王卫,赵楠,黄富德,曾雪晴,赖海梅,梅源,朱永清. 发酵蔬菜色泽形成机制及影响因素研究进展[J]. 食品科学, 2022, 43(23): 269-276. |
[7] | 祝超智,陈画,田玮,崔文明,赵改名,参木友. 肉类蛋白质消化性影响因素研究进展[J]. 食品科学, 2022, 43(21): 349-357. |
[8] | 黄金萍,吴继红,廖小军,劳菲. 果蔬汁饮料中花色苷与VC相互作用研究进展[J]. 食品科学, 2022, 43(21): 358-371. |
[9] | 俞珊,段孟霞,童彩玲,孙继帅,姜海鑫,李丹洁,赵建波,庞杰,吴春华. 可得然胶功能性质及其在食品中的应用研究进展[J]. 食品科学, 2022, 43(19): 277-284. |
[10] | 李华韬,张巧智,倪皓洁,王彦波,刘福奇,傅玲琳. 食源性晚期糖基化终末产物检测技术研究进展[J]. 食品科学, 2022, 43(17): 362-371. |
[11] | 李可昕,张超凡,刘佩冶,赵玉梅,曹建康. 鲜黄花菜衰老机制与采后贮藏保鲜技术研究进展[J]. 食品科学, 2022, 43(17): 398-404. |
[12] | 乔凤至,侯率,谭明乾. 加工诱导形成的食源性荧光碳点研究进展[J]. 食品科学, 2022, 43(11): 222-233. |
[13] | 张园园,周聪,郭依萍,叶可萍. 肉及肉制品中单核细胞增生李斯特菌交叉污染的研究进展[J]. 食品科学, 2022, 43(11): 293-300. |
[14] | 张锡茹,关慧,邢少华,刘文丽,李华敏. 泡菜微生物演替与风味物质变化的研究进展[J]. 食品科学, 2021, 42(23): 294-305. |
[15] | 吴素娟,刘战民,王兆明,周辉,周凯,徐宝才. 食品加工对血红蛋白结构和功能特性影响的研究进展[J]. 食品科学, 2021, 42(21): 256-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||