[1]张鑫楠, 孙平平, 杜艳民, 等. ‘早酥’梨及其芽变果实品质、酚类组分和色素合成基因表达分析[J]. 果树学报, 2020, 37(12): 1787-1797. DOI: 10.13925/j.cnki.gsxb.20200225.[2]张山林, 陈秀蓉. 早酥梨叶枯病危害损失与防治指标研究[J]. 甘肃林业科技, 2000(02): 14-18. DOI: 10.3969/j.issn.1006-0960.2000.02.004.[3]Pétriacq P, López A, Luna E . Fruit decay to diseases: can induced resistance and priming help?[J]. Plants, 2018, 7(4): 77. DOI: 10.3390/plants7040077.[4]Romanazzi G, Sanzani S M, Bi Y, et al. Induced resistance to control postharvest decay of fruit and vegetables[J]. Postharvest Biology & Technology, 2016:82-94. DOI: 10.1016/j.postharvbio.2016.08.003.[5]Vatsa P, Sanchez L, Clement C, et al. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes[J]. International Journal of Molecular Sciences, 2010, 11(12):5095-5108. DOI: 10.3390/ijms11125095.[6]Varnier A L, Sanchez L, Vatsa P, et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine[J]. Plant, Cell & Environment, 2009, 32(2):178-193. DOI: 10.1111/j.1365-3040.2008.01911.x.[7]Sanchez L, Courteaux B, Hubert J, et al. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid[J]. Plant physiology, 2012, 160(3):1630-1641. DOI: 10.1104/pp.112.201913.[8]Duan X W, Liu T, Zhang D, et al. Effect of pure oxygen atmosphere on antioxidant enzyme and antioxidant activity of harvested litchi fruit during storage[J]. Food Research International, 2011, 44(7):1905-191. DOI: 10.1016/j.foodres.2010.10.027.[9]Mondal K, Sharma N S, Malhotra S P, et al. Antioxidant systems in ripening tomato fruits[J]. Biologia Plantarum, 2004, 48(1):49-53. DOI: 10.1023/B:BIOP.0000024274.43874.5b.[10]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410. DOI: 10.1016/s1360-1385(02)02312-9.[11]Jimenez A, Creissen G, Kular B, et al. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening[J]. Planta, 2002, 214(5):751-758. DOI: 10.1007/s004250100667.[12]Shang Q M, Liang L, Dong C J. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L[J]. Planta, 2012, 236(4): 1093-1105. DOI: 10.1007/s00425-012-1659-1.[13]Zhou F, Xu D, Liu C, et al. Ascorbic acid treatment inhibits wound healing of fresh-cut potato strips by controlling phenylpropanoid metabolism[J]. Postharvest Biology and Technology, 2021, 181(12): 111644. DOI: 10.1016/j.postharvbio.2021.111644.[14]Knobloch K H, Hahlbrock K. 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm. Partial purification, substrate specificity, and further properties[J]. Archives of Biochemistry & Biophysics, 1977, 184(1): 237-248. DOI: 10.1016/0003-9861(77)90347-2.[15]Li H, Suo J, Han Y, et al. The effect of 1-methylcyclopropene, methyl jasmonate and methyl salicylate on lignin accumulation and gene expression in postharvest 'Xuxiang' kiwifruit during cold storage[J]. Postharvest Biology and Technology, 2017, 124: 107-118. DOI: 10.1016/j.postharvbio.2016.10.003.[16]Scalbert A, Monties B, Janin G. Tannins in wood: comparison of different estimation methods[J]. Journal of Agricultural and Food Chemistry, 1989, 37(5): 4245-4245. DOI: 10.1021/jf00089a026.[17]Cvek J, Medi?-Sari? M, Jasprica I, et al. Optimisation of an extraction procedure and chemical characterization of Croatian propolis tinctures[J]. Phytochemical Analysis, 2010, 18(5): 451-459. DOI: 10.1002/pca.1001.[18]Zhu L Q, Zhou J, Zhu S H, et al. Inhibition of browning on the surface of peach slices by short-term exposure to nitric oxide and ascorbic acid[J]. Food Chemistry, 2009, 114( 1):174-179. DOI: 10.1016/j.foodchem.2008.09.036.[19]Sun J, You X R, Li L, et al. Effects of a phospholipase D inhibitor on postharvest enzymatic browning and oxidative stress of litchi fruit[J]. Postharvest Biology & Technology, 2011, 62(3):288-294. DOI: 10.1016/j.postharvbio.2011.07.001.[20]Fluhr S R. Superoxide production by plant homologues of the gp91phoxNADPH oxidase. modulation of activity by calcium and by tobacco mosaic virus infection[J]. Plant Physiology, 2001, 126(3):1281-1290. DOI: 10.2307/4279996.[21]Bewley R. Lipid peroxidation associated with accelerated aging of soybean Axes[J]. Plant Physiology, 1980, 65(2):245-248. DOI: 10.1104/pp.65.2.245.[22]Gao H J, Yang H Y, Bai J P, et al. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress[J]. Frontiers in Plant Science, 2015, 13(5):787. DOI: 10.3389/fpls.2014.00787.[23]Venisse J S, Gullner G, Brisset M N. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora[J]. Plant Physiology, 2001, 125(4):2164-2172. DOI: 10.1104/pp.125.4.2164.[24]Bao G, Bi Y, Li Y, et al. Overproduction of reactive oxygen species involved in the pathogenicity of Fusarium in potato tubers[J]. Physiological & Molecular Plant Pathology, 2014, 86:35-42. DOI: 10.1016/j.pmpp.2014.01.004.[25]Cao S, Hu Z, Zheng Y, et al. Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit[J]. Food Chemistry, 2011, 125(1):145-149. DOI: 10.1016/j.foodchem.2010.08.051.[26]Wei M L, Ge Y H, Li C Y, et al. G6PDH regulated NADPH production and reactive oxygen species metabolism to enhance disease resistance against blue mold in apple fruit by acibenzolar-S-methyl[J]. Postharvest Biology and Technology, 2019, 148:228-235. DOI: 10.1016/j.postharvbio.2018.05.017.[27]Yu X Z, Zhang X H, Yue D M. Alternation of antioxidative enzyme gene expression in rice seedlings exposed to methylene blue[J]. Environmental Science & Pollution Research, 2014, 21(24):14014-14022. DOI: 10.1007/s11356-014-3306-9.[28]Marangoni A G, Palma T, Stanley D W. Membrane effects in postharvest physiology[J]. Postharvest Biology and Technology, 1996, 7(3):193-217. DOI: 10.1016/0925-5214(95)00042-9.[29]HAN X Y, MAO L C, LU W J, et al. Abscisic acid induces differential expression of genes involved in wound-induced suberization in postharvest tomato fruit[J]. Journal of Integrative Agriculture, 2018, 17(12):2670-2682. DOI: 10.1016/S2095-3119(18)62142-2.[30]Patil S V, Kumudini B S. Seed priming induced blast disease resistance in finger millet plants through phenylpropanoid metabolic pathway[J]. Physiological and Molecular Plant Pathology, 2019, 108:101428-101428. DOI: 10.1016/j.pmpp.2019.101428.[31]Liu H, Jiang W, Yang B, et al. Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms[J]. Postharvest Biology & Technology, 2005, 35(3):263-269. DOI: 10.1016/j.postharvbio.2004.08.006.[32]Bhardwaj Garima, Ravi Indu, Kumar Sanjay,et al. Induction of β-1,3-glucanase and chitinase activity, cloning and their characterization in the defense response ofCuminum cyminum plant against the fungal pathogen Fusarium oxysporum[J]. Archives of Phytopathology and Plant Protection, 2021, 54(19-20):1617-1632. DOI: 10.1080/03235408.2021.1932016.[33]Loon L V, Rep M, Pieterse C. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology, 2006, 44(1):135-162. DOI: 10.1146/annurev.phyto.44.070505.143425.[34]Mauch F, Mauch-Mani B, Boller T. Antifungal hydrolases in pea tissue:II. inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase[J]. Plant Physiology, 1988, 88(3):936-942. DOI: 10.1104/pp.88.3.936.[35]Bernard Fritig, Thierry Heitz, Michel Legrand. Antimicrobial proteins in induced plant defense[J]. Current Opinion in Immunology,1998,10(1):16-22. DOI: 10.1016/S0952-7915(98)80025-3.[36]刘菊. 鼠李糖脂对西瓜枯萎病防治作用的研究[D]. 浙江大学, 2012.[37]Conrath, Beckers, Gerold JM, et al. Priming for enhanced defense[J]. Annual Review of Phytopathology, 2015, 53:97-119. DOI: 10.1146/annurev-phyto-080614-120132.[38]Nukuntornprakit O A, Chanjirakul K, Doorn W V, et al. Chilling injury in pineapple fruit: fatty acid composition and antioxidant metabolism[J]. Postharvest Biology & Technology, 2015, 99:20-26. DOI: 10.1016/j.postharvbio.2014.07.010.[39]南海风, 朱冠宇, 樊丽, 等. 草莓果实采后衰老过程中活性氧及保护酶活性的变化[J]. 北方园艺, 2016(15): 123-126. DOI: 10.11937/bfyy.201615030.[40]周春华, 刘红霞, 韦军. 活性氧与果实成熟衰老[J]. 上海交通大学学报(农业科学版), 2002, (01):77-84. DOI: 10.3969/j.issn.1671-9964.2002.01.018.[41]孔静, 易美君, 许昕, 等. 冷藏期间苹果果实能量和NADP-苹果酸酶及基因表达的变化[J]. 食品工业科技, 2017, 38(11):329-333+339. DOI: 10.13386/j.issn1002-0306.2017.11.055.[42]李辉, 林毅雄, 林河通, 等. 1-MCP延缓采后‘油木奈’果实衰老及其与能量代谢的关系[J]. 现代食品科技, 2015, 31(04):121-127. DOI: CNKI:SUN:GZSP.0.2015-04-020. |