食品科学 ›› 0, Vol. ›› Issue (): 0-0.
• 专题论述 • 下一篇
魏孔菊,董同珺,朱国花,双媛,肖甚圣,王学东,丁贝贝
收稿日期:
2022-11-15
修回日期:
2023-11-02
出版日期:
2023-12-15
发布日期:
2023-12-28
通讯作者:
丁贝贝
E-mail:dingbeibei2010@163.com
基金资助:
1, 1, 1, 1, 1, 1,Bei-Bei DING
Received:
2022-11-15
Revised:
2023-11-02
Online:
2023-12-15
Published:
2023-12-28
Contact:
Bei-Bei DING
E-mail:dingbeibei2010@163.com
摘要: 近几年,高内相 Pickering 乳液(high internal phase Pickering emulsions,HIPPEs)因其独特的组织特性受到越来越多的关注,在食品领域的应用前景非常可观。天然生物大分子作为生物体内的活性成分具有良好的生物相容性、可降解性、无毒或低毒性,是优异的 HIPPEs 稳定剂。本文简述了天然生物大分子稳定 HIPPEs 的潜力,以及基于生物大分子稳定的 HIPPEs 在抑制脂质的氧化、作为反式脂肪酸的替代品、营养物质的封装和递送、食品 3D 打印以及包埋益生菌方面应用的研究进展,以期能够为基于天然生物大分子稳定的HIPPEs 在食品中的应用提供参考和借鉴。
中图分类号:
魏孔菊 董同珺 朱国花 双媛 肖甚圣 王学东 丁贝贝. 天然生物大分子稳定高内相Pickering乳液及其在食品中的应用[J]. 食品科学, 0, (): 0-0.
Bei-Bei DING. High Internal Phase Pickering Emulsions Stabilized by Natural Biomacromolecules and Their Application in Food[J]. FOOD SCIENCE, 0, (): 0-0.
[1]姜英, 汪振炯, 李盛杰, 等.双重刺激响应型Pickering乳液研究进展[J].化学世界,2022,63(01):57-64. DOI:10.19500/j.cnki.0367-6358.20200810.[2] 陈阳, 梁勋, 张亚丽, 等. 蛋白质稳定HIPPEs及在食品中的应用研究进展[J]. 食品科技,2020, 45(07): 27-32. DOI:10.13684/j.cnki.spkj.2020.07.006.[3] 焦博, 石爱民, 刘红芝, 等. 基于食品级固体颗粒稳定的Pickering乳液研究进展[J]. 食品科学, 2018, 39(5): 296-303. DOI:10.7506/spkx1002-6630-201805044.[4] M CC LEMENTS D J, CE GUMUS. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance[J]. Advances in Colloid and Interface Science, 2016: 3-26. DOI:10.1016/j.cis.2016.03.002.[5] MCCLEMENTS D J, XIAO H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles[J]. Npj Science of Food, 2017, 1(1): 6. DOI:10.1038/s41538-017-0005-1.[6] 吴昱春, 陈小草, 张琦, 等. Pickering乳液稳定机理及其在食品中的应用研究进展[J]. 食品科学, 2021, 42(7): 275-282. DOI:10.7506/spkx1002-6630-20200325-373.[7] LINKE CHRISTINA, DRUSCH STEPHAN. Pickering emulsions in foods - opportunities and limitations[J]. Critical reviews in food science and nutrition, 2017, 58(12):1971-1985. DOI:10.1080/10408398.2017.1290578.[8] CUI Fengzhan, ZHAO Sheliang, GUAN Xin, et al. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications[J]. Food Hydrocolloids,2021,119. DOI:10.1016/j.foodhyd.2021.106812.[9] TAVERNIER I , WIJAYA W , MEEREN P , et al. Food-grade particles for emulsion stabilization[J]. Trends in Food Science & Technology, 2016, 50:159-174. DOI:10.1016/j.tifs.2016.01.023.[10] RIBEIRO E F, MORELL P, NICOLETTI V R, et al. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation[J]. Food Hydrocolloids, 2021, 119(2):106839. DOI: 10.1016/j.foodhyd.2021.106839[11] 李安琪, 杨曦, 张菡, 等. 多糖的乳化特性及其在乳液食品质构属性调控方面的研究进展[J].食品科学,2020,41(23):322-328. DOI: 10.7506/spkx1002-6630-20191011-085.[12] 高雅馨, 于有强, 朱巧莎, 等. 天然生物大分子及其复合物在食品微凝胶传递体系中的应用研究进展[J]. 食品科学, 2019, 40(15): 323-329. DOI: CNKI:SUN:SPKX.0.2019-15-044.[13] PANG B, LIU H, REHFELDT F, et al. High internal phase Pickering emulsions stabilized bydialdehyde amylopectin/chitosan complex nanoparticles[J]. Carbohydrate Polymers, 2021, 258(4):117655. DOI: 10.1016/j.carbpol.2021.117655.[14] GAO Hongxia, MA Li, CHENG Ce, et al. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions[J]. Trends in Food Science & Technology, 2021, 112:36-49. DOI: 10.1016/J.TIFS.2021.03.041.[15] REHMAN A, TONG Q, JAFARI S M, et al. Carotenoid-loaded nanocarriers: A comprehensive review[J]. Advances in Colloid and Interface Science, 2019, 275:102048. DOI: 1016/j.cis.2019.102048.[16] CAPRON I, CATHALA B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals[J]. Biomacromolecules, 2013, 14(2):291-296. DOI: 10.1021/bm301871k.[17] NSOR ATINDANA JOHN, CHEN MAOSHEN, H. DOUGLAS GOFF, et al. Functionality and nutritional aspects of microcrystalline cellulose in food[J]. Carbohydrate Polymers, 2017, 172:159-174. DOI: 10.1016/j.carbpol.2017.04.021.[18] MIAO Chuanwei, MIRVAKILI MEHRNEGAR, HAMAD WADOOD Y, et al. A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals [J]. Journal of colloid and interface science, 2021, 608(3):2820-2829. DOI: 10.1016/J.JCIS.2021.11.010.[19] DONG Hui, DING Qijun, JIANG Yifei, et al. Pickering emulsions stabilized by spherical cellulose nanocrystals[J]. Carbohydrate Polymers, 2021, 265:118101-118101. DOI: 10.1016/j.carbpol.2021.118101.[20] MA Tao, CUI Ranran, LU Shuyu, et al. High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing[J]. Food Hydrocolloids,2022,125. DOI: 10.1016/j.foodhyd.2021.107418.[21] CHEN Qiuhong, ZHENG Jie, XU Yanteng, et al. Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids, 2018, 75:125-130. DOI: 10.1016/j.foodhyd.2017.09.005.[22] LEE KOON YANG, BLAKER JONNY J, MURAKAMI RYO, et al. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils [J]. Langmuir : the ACS journal of surfaces and colloids, 2014, 30(2):452-60. DOI: 10.1021/la4032514.[23] LI S, LI C, YANG Y, et al. Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size[J]. Food Chemistry, 2019, 283(15):437-444. DOI:10.1016/j.foodchem.2019.01.020. [24] YUSOFF A, MURRAY B S. Modified starch granules as particle-stabilizers of oil-in-water emulsions[J]. Food Hydrocolloids, 2011, 25(1):42-55. DOI: 10.1016/j.foodhyd.2010.05.004.[25] RAYNER M, TIMGREN A, SJ M, et al. Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions [J]. Journal of the Science of Food & Agriculture, 2012, 92(9): 1841-1847. DOI: 10.1002/jsfa.5610.[26] B L A, MARíA LIDIA HERRERA A B, MARíA LAURA FORESTI A B. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature-ScienceDirect[J]. Food Hydrocolloids, 2018, 80:97-110. DOI: 10.1016/j.foodhyd.2018.01.032.[27] WANG C, PEI X, TAN J, et al. Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release[J]. International Journal of Biological Macromolecules, 2020, 146(5):171-178. DOI: 10.1016/j.ijbiomac.2019.12.269.[28] HAAJ S B, THIELEMANS W, MAGNIN A, et al. Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance[J]. Acs Appl Mater Interfaces, 2014, 6(11):8263-8273. DOI: 10.1021/am501077e.[29] YANG T, ZHENG J, ZHENG B S, et al. High Internal Phase Emulsions Stabilized by Starch Nanocrystals[J]. Food Hydrocolloids, 2018, 82(9): 230-238. DOI: 10.1016/j.foodhyd.2018.04.006.[30] ALBERT C, BELADJINE M, TSAPIS N, et al. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications[J]. Journal of Controlled Release, 2019, 309:302-332. DOI: 10.1016/j.jconrel.2019.07.003.0.[31] HAMED I, F ?ZOGUL, REGENSTEIN J M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review[J]. Trends in Food Science & Technology, 2016, 48:40-50. DOI: 10.1016/j.tifs.2015.11.007.[32] SUN Gege, ZHAO Qingfeng, LIU Shilin, et al. Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stable pickering emulsions[J]. Food Hydrocolloids, 2019, 97:105178-105178. DOI: 10.1016/j.foodhyd.2019.105178.[33] BARKHORDARI M R, FATHI M. Production and characterization of chitin nanocrystals from prawn shell and their application for stabilization of Pickering emulsions[J]. Food Hydrocolloids, 2018, 82:338-345. DOI: 10.1016/j.foodhyd.2018.04.030.[34] PERRIN E, BIZOT H, CATHALA B, et al. Chitin nanocrystals for Pickering high internal phase emulsions [J]. Biomacromolecules, 2014, 15(10):3766-3771. DOI: 10.1021/bm5010417.[35] ZHU Ya, HUAN Siqi, BAI Long, et al. High internal phase oil-in-water Pickering emulsions stabilized by chitin nanofibrils: 3D structuring and solid foams [J]. ACS applied materials & interfaces, 2020, 12(9):11240-11251. DOI: 10.1021/acsami.9b23430.[36] 李玮. 壳聚糖微胶稳定的高内相乳液包埋类胡萝卜素对其稳定性和消化特性的影响[D].南京农业大学,2019. DOI: 10.27244/d.cnki.gnjnu.2019.001205.[37] ASMA SHARKAWY, MARIA FILOMENA BARREIRO, ALíRIO E. RODRIGUES, et al. Chitosan-based Pickering emulsions and their applications: A review[J]. Carbohydrate Polymers, 2020, 250:116885-116885. DOI: 10.1016/j.carbpol.2020.116885.[38] KADAM V J, JADHAV V M, AND DUTTAGUPTA D S. Chitosan: A propitious biopolymer for drug delivery [J]. Current Drug Delivery, 2015, 12(4): 369-381. DOI: 10.2174/1567201812666150310151657.[39] HUANG Chen, SUN Fusheng, MA Xuxi, et al. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance[J]. Carbohydrate Polymers, 2022, 288:119277-119277. DOI: 10.1016/j.carbpol.2022.119277.[40] COSTA A, GOMES A, FURTADO G, et al. Modulating in vitro digestibility of Pickering emulsions stabilized by food-grade polysaccharides particles-ScienceDirect[J]. Carbohydrate Polymers,2020, 227:115344-115344. DOI: 10.1016/j.carbpol.2019.115344.[41] BAKSHIA P S, SELVAKUMARA D, K KADIRVELUB, et al. Chitosan as an environment friendly biomaterial - a review on recent modifications and applications[J]. International Journal of Biological Macromolecules, 2019, 150:1072-1083. DOI: 10.1016/j.ijbiomac.2019.10.113.[42] LI MA, LIQIANG ZOU, DAVID JULIAN MCCLEMENTS, et al. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic[J]. Food Hydrocolloids,2020,100:105381. DOI: 10.1016/j.foodhyd.2019.105381.[43] GU Ruihan, LI Chengcheng, SHI Xiaotong, et al. Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water Pickering emulsions and the formation mechanism[J]. Food Chemistry,2022, 395:133641-133641. DOI: 10.1016/j.foodchem.2022.133641.[44] UDOMRATI S, KHALID N, GOHTANI S, et al. Effect of esterified oligosaccharides on the formation and stability of oil-in-water emulsions[J]. Carbohydrate Polymers, 2016, 143:44-50.[45] CHYTIL M, STRAND S, CHRISTENSEN B E, et al. Calorimetric and light scattering study of interactions and macromolecular properties of native and hydrophobically modified hyaluronan[J]. Carbohydrate Polymers, 2010, 81(4):855-863. DOI: 10.1016/j.carbpol.2010.03.059.[46] AGUILERA MIGUEL A, E LóPEZ GONZALEZ, SADTLER V, et al. Hydrophobically Modified Dextrans as Stabilizers for O/W Highly Concentrated Emulsions. Comparison with Commercial Non-Ionic Polymeric Stabilizers[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018: 550,155-166. DOI: 10.1016/j.colsurfa.2018.04.022.[47] 陈阳, 梁勋, 张亚丽, 等. 蛋白质稳定高内相Pickering乳液及在食品中的应用研究进展[J].食品科技, 2020, 45(07): 27-32. DOI:10.13684/j.cnki.spkj.2020.07.006.[48] YAN Xiaojia, MA Cuicui, CUI Fengzhan, et al. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods[J]. Trends in Food Science & Technology, 2020, 103:293-303. DOI: 10.1016/j.tifs.2020.07.005.[49] WEI L A, HG A, MC B, et al. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels - ScienceDirect[J]. Food Hydrocolloids, 2019, 88:210-217. DOI: 10.1016/j.foodhyd.2018.10.012.[50] XU Yanteng, LIU Tongxun, TANG Chuanhe, et al. Novel pickering high internal phase emulsion gels stabilized solely by soy β -conglycinin[J]. Food Hydrocolloids, 2019, 88:21-30. DOI: 10.1016/j.foodhyd.2018.09.031.[51] HAO Zezhou, PENG Xiuqing, TANG Chuanhe, et al. Edible pickering high internal phase emulsions stabilized by soy glycinin: Improvement of emulsification performance and pickering stabilization by glycation with soy polysaccharide[J]. Food Hydrocolloids, 2020, 103:105672-105672. DOI: 10.1016/j.foodhyd.2020.105672.[52] 赵金成. 葛根素对乳清蛋白凝胶特性和乳化性质的影响[D].南昌大学,2021.DOI: 10.27232/d.cnki.gnchu.2021.001248.[53] CASTRO R, DOMINGUES M, OHARA A, et al. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications[J]. Food Structure, 2017, 14: 17-29. DOI: 10.1016/j.foostr.2017.05.004.[54] LIU Gang, LI Wanrong, QIN Xinguang, et al. Pickering emulsions stabilized by amphiphilic anisotropic nanofibrils of glycated whey proteins[J]. Food Hydrocolloids, 2020, 101:105503-105503. DOI: 10.1016/j.foodhyd.2019.105503.[55] ZAMANI, SOMAYEH, MALCHIONE, et al. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels[J]. Food & Function, 2018,9(2):982-990. DOI: 10.1039/c7fo01800b.[56] SU Jiuling, WANG Xiaoqi, LI Wei, et al. Enhancing the Viability of Lactobacillus plantarum as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels [J]. Journal of agricultural and food chemistry, 2018, 66(46):12335-12343. DOI: 10.1021/acs.jafc.8b03807.[57] 杨天, 徐学明, 江宇, 等. 发芽对不同品种花生营养成分和生物活性成分的影响[J]. 食品工业科技, 2019, 40(14): 1-10.DOI:10.13386/j.issn1002-0306.2019.14.001.[58] ARYA SHALINI S, SALVE AKSHATA R, CHAUHAN S, et al. Peanuts as functional food: a review [J]. Journal of food science and technology, 2016, 53(1):31-41. DOI: 10.1007/s13197-015-2007-9.[59] JIAO Bo, SHI Aimin, WANG Qiang, et al. High Internal Phase Pickering Emulsions Stabilized Solely by Peanut-Protein-Isolate Microgel Particles with Multiple Potential Applications[J]. Angewandte Chemie, 2018, 130(30):9418-9422. DOI: 10.1002/ange.201801350.[60] 焦博. 花生蛋白—多糖Pickering乳液的制备及稳定机理研究[D]. 中国农业科学院, 2018. DOI:CNKI:CDMD:1.1018.151833.[61] ZHANG Mengli, JIA Ruobing, MA Meng, et al. Versatile wheat gluten: functional properties and application in the food-related industry[J]. Critical reviews in food science and nutrition, 2022, :11-17. DOI: 10.1080/10408398.2022.2078785.[62] Hu Y Q, Yin S W, Zhu J H, et al. Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles[J]. Food Hydrocolloids, 2016, 61:300-310. DOI: 10.1016/j.foodhyd.2016.05.028.[63] Liu X, Guo J, Wan Z L, et al. Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers[J]. Food Hydrocolloids, 2018, 77:168-175. DOI: 10.1016/j.foodhyd.2017.09.032.[64] FENG Xin, DAI Hongjie, MA Liang, et al. Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions[J]. Foods, 2019, 8(10):479. DOI: 10.3390/foods8100479.[65] TAN Huan, TU Zhao, JIA Hongqian, et al. Hierarchical Porous Protein Scaffold Templated from High Internal Phase Emulsion Costabilized by Gelatin and Gelatin Nanoparticles [J]. Langmuir: the ACS journal of surfaces and colloids, 2018, 34(16):4820-4829. DOI: 10.1021/acs.langmuir.7b04047.[66] MOHAMMAD REZA KASAAI. Zein and zein -based nano-materials for food and nutrition applications: A review[J]. Trends in Food Science & Technology,2018,79, 184-197. DOI: 10.1016/j.tifs.2018.07.015.[67] ZHANG Minghao, ZHOU Li, YANG Fu, et al. Construction of high internal phase Pickering emulsions stabilized by bamboo fungus protein gels with the effect of pH[J]. Food Chemistry, 2022, 369:130954-130954. DOI: 10.1016/j.foodchem.2021.130954.[68] TCHOLAKOVA S, DENKOV N D, LIPS A. Comparison of solid particles, globular proteins and surfactants as emulsifiers[J]. Physical Chemistry Chemical Physics, 2008, 10(12):1608-1627. DOI: 10.1039/b715933c.[69] XU Yanteng, TANG Chuanhe, BERNARD P. BINKS, et al. High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles[J]. Food Hydrocolloids, 2020, 98:105254. DOI:10.1016/j.foodhyd.2019.105254.[70] WANG Hongxia, HU Ludan, DU Jie, et al. Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application[J]. Food Hydrocolloids,2021,121:107050. DOI: 10.1016/j.foodhyd.2021.107050.[71] 纪雪花,杜启伟,苏琪皓,陈玉峰,丁玉庭,周绪霞.基于油-水界面行为解析蛋白质乳液絮凝机制及其控制方法研究进展[J].食品科学,2021,42(13):281-288. DOI: 10.7506/spkx1002-6630-20200601-005.[72] RIBEIRO E F, MORELL P, NICOLETTI V R, et al. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation[J]. Food Hydrocolloids, 2021, 119(2):106839. DOI:10.1016/j.foodhyd.2021.106839.[73] TAO Y A, XTL B, CHTA B. Novel edible pickering high internal phase emulsion gels efficiently stabilized by unique polysaccharide-protein hybrid nanoparticles from Okara[J]. Food Hydrocolloids, 2020,98:105285-105285. DOI:10.1016/j.foodhyd.2019.105285.[74] ZHU Qiaomei, LU Hongqian, ZHU Jieyu, et al. Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles[J]. Food Hydrocolloids, 2019, 91:204-213. DOI: 10.1016/j.foodhyd.2019.01.029.[75] WIJAYA W, MEEREN P, WIJAYA C H, et al. High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: effect of pH and polymer concentration[J]. Food & Function, 2017, 8(2):584-594. DOI: 10.1039/c6fo01027j.[76] SARKAR A, LI H, D CRAY, et al. Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion[J]. Food Hydrocolloids, 2018, 77:436-444. DOI: 10.1016/j.foodhyd.2017.10.020.[77] LIU Fu, ZHENG Jie, HUANG Caihuan, et al. Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals[J]. Food Hydrocolloids, 2018, 82:96-105. DOI: 10.1016/j.foodhyd.2018.03.047.[78] ZHANG Xingzhong, LIU Yingli, WANG Yixiang, et al. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions[J]. Food Hydrocolloids, 2019, 97:105180. DOI: 10.1016/j.foodhyd.2019.105180.[79] GLUSAC J, DAVIDESKO VARDI I, ISASCHAR OVDAT S, et al. Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins[J]. Food Hydrocolloids, 2018, 82:53-63. DOI: 10.1016/j.foodhyd.2018.03.046.[80] WEI Zihao, CHENG Yujia, HUANG Qingrong, et al. Heteroprotein complex formation of ovotransferrin and lysozyme: Fabrication of food-grade particles to stabilize Pickering emulsions[J]. Food Hydrocolloids, 2019, 96:190-200. DOI: 10.1016/j.foodhyd.2019.05.024.[81] SHI Aimin, FENG Xinyue, WANG Qiang, et al. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective [J]. Food Hydrocolloids, 2020, 109(2):106117. DOI: 10.1016/j.foodhyd.2020.106117.[82] YAGOUB HAJO, ZHU Liping, SHIBRAEN MAHMOUD H. M. A, et al. Complex membrane of cellulose and chitin nanocrystals with cationic guar gum for oil/water separation [J]. Journal of Applied Polymer Science, 2019, 136(6):47947. DOI: 10.1002/app.47947.[83] WANG Xinyue, NIAN Yingqun, ZHANG Zhijie, et al. High internal phase emulsions stabilized with amyloid fibrils and their polysaccharide complexes for encapsulation and protection of β-carotene[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183:110459. DOI: 10.1016/j.colsurfb.2019.110459.[84] TAN Chen, XIE Jiehong, ZHANG Xiaoming, et al. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin[J]. Food Hydrocolloids, 2016, 57:236-245. DOI: 10.1016/j.foodhyd.2016.01.021.[85] MIRYAM CRIADO GONZALEZ, MAR FERNANDEZ GUTIERREZ, JULIO SAN ROMAN, et al. Local and controlled release of tamoxifen from multi (layer-by-layer) alginate/chitosan complex systems[J]. Carbohydrate Polymers, 2019, 206:428-434. DOI: 10.1016/j.carbpol.2018.11.007.[86] SHARKAWY A, BARREIRO M F, RODRIGUES A E. Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions[J]. Carbohydrate Polymers, 2019, 224:115190. DOI:10.1016/j.carbpol.2019.115190.[87] YAN Chi, MCCLEMENTS DAVID JULIAN, ZHU Yuqing, et al. Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion via Altering Interfacial Behaviors [J]. Journal of agricultural and food chemistry, 2019, 67(39):10937-10946. DOI: 10.1021/acs.jafc.9b04009.[88] PANG Bo, LIU Huan, REHFELDT FLORIAN, et al. High internal phase Pickering emulsions stabilized by dialdehyde amylopectin/chitosan complex nanoparticles[J]. Carbohydrate Polymers, 2021, 258:117655. DOI: 10.1016/J.CARBPOL.2021.117655.[89] LIU Yikun, YAN Chi, CHEN Jun, et al. Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid[J]. Food Hydrocolloids, 2020, 109:106083. DOI:10.1016/j.foodhyd.2020.106083.[90] PATEL A R. Functional and Engineered Colloids from Edible Materials for Emerging Applications in Designing the Food of the Future[J]. Advanced Functional Materials, 2020, 67(39):1806809. DOI:10.1002/adfm.201806809.[91] GARRY D, FIONA C, CHARLES B, et al. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health[J]. Nutrients, 2013, 5(4):1241-1252. DOI: 10.3390/nu5041241.[92] JACOBSEN C. Some strategies for the stabilization of long chain n-3 PUFA-enriched foods: A review[J]. European Journal of Lipid Science and Technology, 2015, 117(11):1853-1866. DOI: 10.1002/ejlt.201500137.[93] MCCLEMENTS DAVID JULIAN, DECKER ERIC. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation [J]. Journal of agricultural and food chemistry, 2018, 66(1):20-35. DOI: 10.1021/acs.jafc.7b05066.[94] ELIAS R J, KELLERBY S S, DECKER E A. Antioxidant Activity of Proteins and Peptides[J]. Critical Reviews in Food Science & Nutrition, 2008, 48(5):430-441. DOI: 10.1080/10408390701425615.[95] TZOUMAKI M V, MOSCHAKIS T, SCHOLTEN E, et al. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions[J]. Food & Function, 2013, 4(1):123-129. DOI: 10.1039/c2fo30129f.[96] HUANG Xiao Nan, ZHOU FuZhen, YANG Tao, et al. Fabrication and characterization of Pickering High Internal Phase Emulsions (HIPEs) stabilized by chitosan-caseinophosphopeptides nanocomplexes as oral delivery vehicles[J]. Food Hydrocolloids, 2019, 93:34-45. DOI: 10.1016/j.foodhyd.2019.02.005.[97] XIAO Yongmei, CHEN Chen, WANG Bijia, et al. In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin [J]. Journal of agricultural and food chemistry, 2018, 66(46):12344-12352. DOI: 10.1021/acs.jafc.8b03873.[98] Li Ruren, He Qing, Guo Mi, et al. Universal and simple method for facile fabrication of sustainable high internal phase emulsions solely using meat protein particles with various pH values[J]. Food Hydrocolloids, 2020, 100:105444-105444. DOI: 10.1016/j.foodhyd.2019.105444.[99] YANG Yiran, WANG Wenhang, WU Zinan, et al. O/W Pickering emulsions stabilized by Flammulina velutipes polysaccharide nanoparticles as a fat substitute: the effects of phase separation on emulsified sausage's techno-functional and sensory quality [J]. Journal of the science of food and agriculture, 2020, 100(1):268-276. DOI: 10.1002/jsfa.10034.[100] WANG Yanan, WANG Wenhang, JIA Hongjiao, et al. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage [J]. Journal of food science, 2018, 83(6):1740-1747. DOI: 10.1111/1750-3841.14164.[101] LIU Gang, WANG Qi, HU Zhongze, et al. Maillard-Reacted Whey Protein Isolates and Epigallocatechin Gallate Complex Enhance the Thermal Stability of the Pickering Emulsion Delivery of Curcumin [J]. Journal of agricultural and food chemistry, 2019, 67(18):5212-5220. DOI: 10.1021/acs.jafc.9b00950.[102] TAN Huan, SUN Guanqing, LIN Wei, et al. Gelatin particle stabilized high internal phase emulsions as nutraceutical containers [J]. ACS applied materials & interfaces, 2014, 6(16):13977-13984. DOI: 10.1021/am503341j.[103] WILLIAM WACHIRA MWANGI, HUI PENG LIM, LIANG EE LOW, et al. Food-grade Pickering emulsions for encapsulation and delivery of bioactives[J]. Trends in Food Science & Technology, 2020, 100:320-332. DOI: 10.1016/j.tifs.2020.04.020.[104] ALI MAREFATI, MARIANNICK BERTRAND, MALIN SJ??, et al. Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization[J]. Food Hydrocolloids, 2017, 63:309-320. DOI: 10.1016/j.foodhyd.2016.08.043.[105] HAN Jing, CHEN Fenglian, GAO Chengcheng, et al. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles[J]. International Journal of Biological Macromolecules, 2020, 157:202-211. DOI: 10.1016/j.ijbiomac.2020.04.177.[106] CHEN Kai, QIAN Yong, WANG Chaoyang, et al. Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy[J]. Journal of Colloid And Interface Science, 2021, 591:352-362. DOI: 10.1016/J.JCIS.2021.02.012.[107] TAVASOLI SEDIGHE, LIU Qi, JAFARI SEID MAHDI, et al. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery[J]. Food Hydrocolloids, 2022, 124. DOI: 10.1016/j.foodhyd.2021.107280.[108] WU Chao, LIU Zhe, ZHI Lanyi, et al. Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing[J]. Nanomaterials, 2022, 12(17):2949-2949. DOI: 10.3390/NANO12172949.[109] FERNANDA C. GODOI, SANGEETA PRAKASH, BHESH R. BHANDARI, et al. 3d printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering, 2016, 179:44-54. DOI: 10.1016/j.jfoodeng.2016.01.025.[110] STéPHANE PORTANGUEN, PASCAL TOURNAYRE, JASON SICARD, et al. Toward the design of functional foods and biobased products by 3D printing: A review[J]. Trends in Food Science & Technology, 2019, 86:188-198. DOI: 10.1016/j.tifs.2019.02.023.[111] FENG Tingting, FAN Chunli, WANG Xuejiao, et al. Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing[J]. Food Hydrocolloids, 2022, 124:107265. DOI: 10.1016/J. foodhyd.2021.107265.[112] WAN Ying, WANG Ren, FENG Wei, et al. High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing[J]. Carbohydrate Polymers, 2021, 273:118586-118586. DOI: 10.1016/J.carbpol.2021.118586.[113] ZHANG Lijuan, ZAKY AHMED A., ZHOU CHENGFU, et al. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application[J]. Food Hydrocolloids, 2022, 131: 107744. DOI: 10.1016/J.foodhyd.2022.107744.[114] ZHAO Linlin, ZHANG Min, CHITRAKAR BIMAL, et al. Recent advances in functional 3D printing of foods: a review of functions of ingredients and internal structures.[J]. Critical reviews in food science and nutrition, 2020, 61(21):1-15. DOI: 10.1080/10408398.2020.1799327.[115] ZHAO M, HUANG X, ZHANG H, et al. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/caseinate[J]. Food Hydrocolloids, 2020, 105(2):105790. DOI:10.1016/j.foodhyd.2020.105790.[116] LIN W H, YU B, JANG S H, et al. Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry[J]. Anaerobe, 2007, 13(3-4):107-113. DOI: 10.1016/j.anaerobe.2007.04.006.[117] 陈芳芳, 胡猛, 张超, 等. 天然多糖微凝胶的制备与应用研究进展[J]. 食品科学, 2022, 43(1):240-249. DOI:10.7506/spkx1002-6630-20200815-201.[118] SU Jiaqi, CAI Yongjian, TAI Kedong, et al. High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release[J]. Food & function, 2021,12(1). DOI: 10.1039/d0fo01659d.[119] QIN Xinsheng, GAO Qunyu, LUO Zhigang, et al. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles[J]. Food Hydrocolloids, 2021, 116:106658. DOI:10.1016/j.foodhyd.2021.106658. |
[1] | 魏真,陈金玲,杨杰. 岩藻多糖降解酶的研究进展[J]. 食品科学, 2024, 45(9): 306-313. |
[2] | 谢莹莹,庞旭,周海泳,徐健,祁姣姣,朱剑锋,李雪玲,杨美艳,胡文锋. 后生元的作用机制及其在食品领域的应用[J]. 食品科学, 2024, 45(8): 354-363. |
[3] | 王运亭,张爱霞,赵巍,刘敬科. 4种小米糠组分的理化性质和风味成分分析[J]. 食品科学, 2024, 45(6): 136-143. |
[4] | 张春娥,廖若宇,刘新保,牛莹,孙悦,郭宝元. 呕吐毒素污染对小麦质量安全和品质指标及利用价值的影响[J]. 食品科学, 2024, 45(3): 211-216. |
[5] | 谢欢,胡梓晴,刘晓艳,董浩,白卫东,曾晓房,魏先领. 多酚-多糖复合物在食品级Pickering乳液中的应用进展[J]. 食品科学, 2024, 45(3): 247-256. |
[6] | 刘梦琪, 吕瑞, 陈菊, 矫芮文, 米春孝, 李想, 任丹丹, 武龙, 汪秋宽, 周慧. 壳聚糖的抗菌作用及在抑菌活性包装中的应用进展[J]. 食品科学, 2024, 45(1): 261-271. |
[7] | 刘红霞, 李雪利, 吴秀英, 冯旭东, 郭艳荣, 姜云芸, 赖孟瑄, 马海然. 后生元研究进展及应用现状[J]. 食品科学, 2024, 45(1): 326-333. |
[8] | 刘妍靖,李西月,刘跃洲,钱永芳,吕丽华,王滢. 可食用抗菌膜在食品包装领域的应用及研究进展[J]. 食品科学, 2023, 44(9): 331-339. |
[9] | 李可,王艳秋,张怡雪,张俊霞,赵颖颖,杜曼婷,王昱,白艳红. 低钠条件下超声处理对鸡肉肌原纤维蛋白乳液稳定性的影响[J]. 食品科学, 2023, 44(9): 58-65. |
[10] | 李诗文,柳鑫. 烷基咪唑型离子液体在食品领域的应用及安全性研究进展[J]. 食品科学, 2023, 44(7): 286-294. |
[11] | 闫洪波, 楚英珂, 李雯慧, 张德景, 杨青, 位正鹏, 王宗敏, 王彦波, 朱兰兰. 海洋生物活性肽生物学和功能特性的研究进展[J]. 食品科学, 2023, 44(7): 18-28. |
[12] | 李同庆, 张金闯, 陈琼玲, 刘浩栋, 王强. 酶法改性技术及其在植物基肉制品中的应用研究进展[J]. 食品科学, 2023, 44(5): 9-17. |
[13] | 王慧,何宜能,张伟杰,沈黄晨,李申莹,孙弋歌,雷鹏,徐虹,王瑞. γ-聚谷氨酸在冷冻食品中的应用及其抗冻机理的研究进展[J]. 食品科学, 2023, 44(5): 266-274. |
[14] | 杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨. 双歧杆菌及其制剂对炎症性肠病作用机制研究进展[J]. 食品科学, 2023, 44(5): 275-281. |
[15] | 沈央红,方金玉,朱军莉,王彦波. 代谢组学在食品质量安全领域的应用进展[J]. 食品科学, 2023, 44(5): 282-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||