食品科学 ›› 0, Vol. ›› Issue (): 0-0.
• 专题论述 • 下一篇
刘憨憨1,徐晨2,孙明炀1,江政辉2,吕晨艳1
收稿日期:
2022-11-25
修回日期:
2023-11-06
出版日期:
2023-12-15
发布日期:
2023-12-28
通讯作者:
吕晨艳
E-mail:2019023@cau.edu.cn
基金资助:
Hanhan LIU1, 2, 1,Zheng-Hui JIANGChen-Yan Lv
Received:
2022-11-25
Revised:
2023-11-06
Online:
2023-12-15
Published:
2023-12-28
Contact:
Chen-Yan Lv
E-mail:2019023@cau.edu.cn
摘要: 大麦作为重要的谷类作物,在饲料生产和食品加工中占有重要地位,其中大麦籽粒中所含的蛋白质对啤酒酿造过程及啤酒品质有重要的影响,尤其是啤酒泡沫、啤酒浑浊等。然而,目前对于大麦中起重要作用的蛋白质如大麦醇溶蛋白、热稳定性蛋白(蛋白质Z和脂质转移蛋白)等的研究还较少,结构方面的信息有所欠缺,功能的开发也处于起步阶段。本文主要从大麦中重要的蛋白质(醇溶蛋白、蛋白质Z和脂质转移蛋白等)出发,对大麦中蛋白质的结构、功能性质和应用进行综述,并概述了其在啤酒酿造中的作用及变化,拓宽其中生产加工中的应用,为大麦中蛋白质的加工和利用提供理论参考。
中图分类号:
刘憨憨 徐晨 孙明炀 江政辉 吕晨艳. 大麦中的重要蛋白质及其对啤酒酿造的影响研究进展[J]. 食品科学, 0, (): 0-0.
Hanhan LIU Zheng-Hui JIANG Chen-Yan Lv. Proteins in barley and their effects on beer brewing[J]. FOOD SCIENCE, 0, (): 0-0.
[1] Chen X, Shao S, Chen M, et al. Morphology and physicochemical properties of starch from waxy and non‐waxy barley[J]. Starch‐St?rke, 2020, 72(5-6): 1900206.[2] Kumar V, Chaturvedi S K, Singh G P. Brief review of malting quality and frontier areas in barley[J]. Cereal Research Communications, 2022: 1-15.[3] 谭琳元. 大麦进口对中国大麦产业的影响研究[D]. 中国农业科学院, 2020. DOI: 10.27630/d.cnki.gznky.2020.000069.[4] Geng L, Li M, Zhang G, et al. Barley: a potential cereal for producing healthy and functional foods[J]. Food Quality and Safety, 2022, 6.[5] Biesiekierski J R. What is gluten? [J]. Journal of gastroenterology and hepatology, 2017, 32: 78-81.[6] Linko R, Lapvetel?inen A, Laakso P, et al. Protein composition of a high-protein barley flour and barley grain[J]. Cereal Chem, 1989, 66(6): 478-482.[7] Guo B, Li D, Lin S, et al. Regulation of nitrogen availability results in changes in grain protein content and grain storage subproteomes in barley (Hordeum vulgare L.) [J]. Plos one, 2019, 14(10): e0223831.[8] Farag M A, Xiao J, Abdallah H M. Nutritional value of barley cereal and better opportunities for its processing as a value-added food: a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(4): 1092-1104.[9] Baxter E D. Hordein in barley and malt—A review[J]. Journal of the Institute of Brewing, 1981, 87(3): 173-176.[10] Kirkman M A, Shewry P R, Miflin B J. The effect of nitrogen nutrition on the lysine content and protein composition of barley seeds[J]. Journal of the Science of Food and Agriculture, 1982, 33(2): 115-127.[11] Sikdar M S I, Bowra S, Schmidt D, et al. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain[J]. Transgenic research, 2016, 25(1): 19-31.[12] 周志娟, 梅承芳, 邓登. 大麦中的醇溶蛋白质[J]. 啤酒科技, 2005(4): 2.[13] Makarenko S P, Trufanov V A, Putilina T E. Infrared spectroscopic study of the secondary structure of wheat, rye, and barley prolamins[J]. Russian journal of plant physiology, 2002, 49(3): 326-331.[14] Field J M, Shewry P R, Miflin B J. Aggregation states of alcohol‐soluble storage proteins of barley, rye, wheat and maize[J]. Journal of the Science of Food and Agriculture, 1983, 34(4): 362-369.[15] 曹威. 大麦醇溶蛋白的提取,性质及成膜研究[D]. 武汉轻工大学, 2015.[16] 赵欣, 管骁, 王文高, 韩飞. 大麦醇溶蛋白的流变特性[J]. 食品与发酵工业, 2015, 41(02): 70-74. DOI: 10.13995/j.cnki.11-1802/ts.201502012.[17] 王建, 王德良, 张丽叶, 等. 啤酒中浑浊敏感蛋白的分离与鉴定[J]. 酿酒, 2007, 34(2): 3.[18] 高吉童, 关建平, 徐新宇. 大麦醇溶蛋白D分析方法及其含量与麦芽品质关系的初步研究[J]. 大麦科学, 1991(03): 46-48. DOI: 10.14069/j.cnki.32-1769/s.1991.03.013.[19] 李依璇, 张伟, 吴丽萍, 等. 大麦醇溶蛋白及其酶解产物的抗氧化活性研究[J]. 农产品加工(学刊), 2012(12): 5-9.[20] Festenstein G N, Hay F C, Shewry P R. Immunochemical relationships of the prolamin storage proteins of barley, wheat, rye and oats[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1987, 912(3): 371-383.[21] Funari R, Terracciano I, Della Ventura B, et al. Label-free detection of gliadin in food by quartz crystal microbalance-based immunosensor[J]. Journal of agricultural and food chemistry, 2017, 65(6): 1281-1289.[22] Ferrari E, Monzani R, Saverio V, et al. Probiotics supplements reduce ER stress and gut inflammation associated with gliadin intake in a mouse model of gluten sensitivity[J]. Nutrients, 2021, 13(4): 1221.[23] Scherf K A, Koehler P, Wieser H. Gluten and wheat sensitivities–an overview[J]. Journal of Cereal Science, 2016, 67: 2-11.[24] 田爱梅, 曹家树. 植物脂质转移蛋白[J]. 细胞生物学杂志, 2008, 30(4): 6.[25] Duo J, Xiong H, Wu X, et al. Genome-wide identification and expression profile under abiotic stress of the barley non-specific lipid transfer protein gene family and its Qingke Orthologues[J]. BMC genomics, 2021, 22(1): 1-17.[26] Zhang M, Kim Y, Zong J, et al. Genome-wide analysis of the barley non-specific lipid transfer protein gene family[J]. The Crop Journal, 2019, 7(1): 65-76.[27] Scheurer S, Lauer I, Foetisch K, et al. Strong allergenicity of Pru av 3, the lipid transfer protein from cherry, is related to high stability against thermal processing and digestion[J]. Journal of Allergy and Clinical Immunology, 2004, 114(4): 900-907.[28] Edstam M M, Viitanen L, Salminen T A, et al. Evolutionary history of the non-specific lipid transfer proteins[J]. Molecular plant, 2011, 4(6): 947-964.[29] Bakan B, Hamberg M, Perrocheau L, et al. Specific adduction of plant lipid transfer protein by an allene oxide generated by 9-lipoxygenase and allene oxide synthase[J]. Journal of Biological Chemistry, 2006, 281(51): 38981-38988.[30] Liu F, Zhang X, Lu C, et al. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis[J]. Journal of experimental botany, 2015, 66(19): 5663-5681.[31] Hollenbach B, Schreiber L, Hartung W, et al. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly[J]. Planta, 1997, 203(1): 9-19.[32] Guo C, Ge X, Ma H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages[J]. Plant molecular biology, 2013, 82(3): 239-253.[33] DeBono A, Yeats T H, Rose J K C, et al. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface[J]. The Plant Cell, 2009, 21(4): 1230-1238.[34] Pagnussat L, Burbach C, Balu?ka F, et al. An extracellular lipid transfer protein is relocalized intracellularly during seed germination[J]. Journal of experimental botany, 2012, 63(18): 6555-6563.[35] Chae K, Gonong B J, Kim S C, et al. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction[J]. Journal of experimental botany, 2010, 61(15): 4277-4290.[36] Van Nierop S N E, Rautenbach M, Axcell B C, et al. The impact of microorganisms on barley and malt quality—a review[J]. Journal of the American Society of Brewing Chemists, 2006, 64(2): 69-78.[37] Cammue B P A, Thevissen K, Hendriks M, et al. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins[J]. Plant Physiology, 1995, 109(2): 445-455.[38] Jégou S, Douliez J P, Mollé D, et al. Purification and structural characterization of LTP1 polypeptides from beer[J]. Journal of agricultural and food chemistry, 2000, 48(10): 5023-5029.[39] Lindorff-Larsen K, Winther J R. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases[J]. FEBS letters, 2001, 488(3): 145-148.[40] Davy A, Svendsen I, Bech L, et al. LTP is not a cysteine endoprotease inhibitor in barley grains[J]. Journal of cereal science, 1999, 30(3): 237-244.[41] Mikolajczak K, Ogrodowicz P, Surma M, et al. Introgression of LTP2 gene through marker assisted backcross in barley (Hordeum vulgare L.)[J]. Electronic Journal of Biotechnology, 2016, 19(6): 9-11.[42] Yeats T H, Rose J. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs)[J]. Protein Science A Publication of the Protein Society, 2010, 17(2): 191-198.[43] Iimure T, Takoi K, Kaneko T, et al. Novel prediction method of beer foam stability using protein Z, barley dimeric α-amylase inhibitor-1 (BDAI-1) and yeast thioredoxin[J]. Journal of agricultural and food chemistry, 2008, 56(18): 8664-8671.[44] Quercia O, Zoccatelli G, Stefanini G F, et al. Allergy to beer in LTP‐sensitized patients: beers are not all the same[J]. Allergy, 2012, 67(9): 1186-1189.[45] Asero R, Mistrello G, Roncarolo D, et al. Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion[J]. International archives of allergy and immunology, 2000, 122(1): 20-32.[46] Egger M, Hauser M, Mari A, et al. The role of lipid transfer proteins in allergic diseases[J]. Current allergy and asthma reports, 2010, 10(5): 326-335.[47] Gorjanovi? S, Su?njevi? D, Beljanski M, et al. Effects of lipid‐transfer protein from malting barley grain on brewers yeast fermentation[J]. Journal of the Institute of Brewing, 2004, 110(4): 297-302.[48] Chen F, Foolad M R. Nucellar-cell-specific expression of a lipid transfer protein gene in barley (Hordeum vulgare L.)[J]. Plant cell reports, 1999, 18(6): 445-450.[49] Klose C, Thiele F, Arendt E K. Changes in the protein profile of oats and barley during brewing and fermentation[J]. Journal of the American Society of Brewing Chemists, 2010, 68(2): 119-124.[50] Rasmussen S K, Hopp H E, Brandt A, et al. A cDNA clone for protein Z, a major barley endosperm albumin[J]. Carlsberg research communications, 1984, 49(3): 385-390.[51] Hejgaard J. Purification and properties of protein Z–a major albumin of barley endosperm[J]. Physiologia Plantarum, 1982, 54(2): 174-182.[52] 韩宇鹏. 麦芽蛋白质Z稳定啤酒泡沫机制的研究[D]. 江南大学, 2017.[53] Fasoli E, Aldini G, Regazzoni L, et al. Les Maitres de l’Orge: the proteome content of your beer mug[J]. Journal of proteome research, 2010, 9(10): 5262-5269.[54] Evans D E, Sheehan M C, Stewart D C. The impact of malt derived proteins on beer foam quality. Part II: The influence of malt foam‐positive proteins and non‐starch polysaccharides on beer foam quality[J]. Journal of the Institute of Brewing, 1999, 105(3): 171-178.[55] Hejgaard J, Rasmussen S K, Brandt A, et al. Sequence homology between barley endosperm protein Z and protease inhibitors of the α1-antitrypsin family[J]. FEBS letters, 1985, 180(1): 89-94.[56] Niu C, Han Y, Wang J, et al. Comparative analysis of the effect of protein Z4 from barley malt and recombinant Pichia pastoris on beer foam stability: Role of N-glycosylation and glycation[J]. International journal of biological macromolecules, 2018, 106: 241-247.[57] Han Y, Wang J, Li Y, et al. Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes[J]. Food Chemistry, 2015, 188: 201-209.[58] Bobalova J, Chmelik J. Proteomic identification of technologically modified proteins in malt by combination of protein fractionation using convective interaction media and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Journal of Chromatography a, 2007, 1163(1-2): 80-85.[59] Niu C, Han Y, Wang J, et al. Malt derived proteins: Effect of protein Z on beer foam stability[J]. Food Bioscience, 2018, 25: 21-27.[60] Han Y, Wang J, Li Y, et al. Purification and structural characterization of protein Z4 from malt[J]. Journal of the American Society of Brewing Chemists, 2016, 74(2): 145-153.[61] 杜元正, 金昭, 张波, 等. 根据蛋白质Z的糖基化特性监控制麦过程[J]. 啤酒科技, 2011(5): 5.[62] Lu Y, Bergenst?hl B. Condensation of iso-humulone in solution and at hydrophobic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126102.[63] Hughes P S, Simpson W J. Bitterness of congeners and stereoisomers of hop-derived bitter acids found in beer[J]. Journal of the American Society of Brewing Chemists, 1996, 54(4): 234-237.[64] Kunimune T, Shellhammer T H. Foam-stabilizing effects and cling formation patterns of iso-α-acids and reduced iso-α-acids in lager beer[J]. Journal of agricultural and food chemistry, 2008, 56(18): 8629-8634.[65] Iimure T, Nankaku N, Kihara M, et al. Proteome analysis of the wort boiling process[J]. Food Research International, 2012, 45(1): 262-271.[66] Roberts R T. Interaction between beer protein and isohumulone[J]. Journal of the Institute of Brewing, 1976, 82(5): 282-282.[67] Lu Y, Bergenst?hl B, Nilsson L. Interfacial properties and interaction between beer wort protein fractions and iso-humulone[J]. Food Hydrocolloids, 2020, 103: 105648.[68] 周芸芸, 陈爽, 王国华, 等. 制麦过程中蛋白酶酶活力变化和蛋白质溶解情况的研究[J]. 啤酒科技, 2017, 000(012): 42-51.[69] 孙俊, 张天雪, 孙丽华,等. 大麦发芽过程中热稳定蛋白质的变化及部分生化特性[J]. 大连工业大学学报, 2008.[70] Li X, Jin Z, Gao F, et al. Characterization of barley serpin Z7 that plays multiple roles in malt and beer[J]. Journal of agricultural and food chemistry, 2014, 62(24): 5643-5650.[71] Jiang Z, Gan J, Wang L, et al. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability[J]. Food Chemistry, 2023, 399: 133952.[72] Wang L, Zhang Y, Johnpaul I A, et al. Protein Z-based promising carriers for enhancing solubility and bioaccessibility of Xanthohumol[J]. Food Hydrocolloids, 2022, 131: 107771.[73] Reddy P S, Kavi Kishor P B, Seiler C, et al. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development[J]. PloS one, 2014, 9(3): e89125.[74] Tissiéres A, Mitchell H K, Tracy U M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs[J]. Journal of molecular biology, 1974, 84(3): 389-398.[75] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in plant science, 2004, 9(5): 244-252.[76] Chaudhary R, Baranwal V K, Kumar R, et al. Genome-wide identification and expression analysis of Hsp70, Hsp90, and Hsp100 heat shock protein genes in barley under stress conditions and reproductive development[J]. Functional & integrative genomics, 2019, 19(6): 1007-1022.[77] Sadura I, Libik-Konieczny M, Jurczyk B, et al. HSP transcript and protein accumulation in brassinosteroid barley mutants acclimated to low and high temperatures[J]. International journal of molecular sciences, 2020, 21(5): 1889.[78] Gorjanovi? S, Beljanski M V, Gavrovi?‐Jankulovi? M, et al. Antimicrobial activity of malting barley grain thaumatin‐like protein isoforms, S and R[J]. Journal of the Institute of Brewing, 2007, 113(2): 206-212.[79] Thimme Gowda C, Purama S N S, Kammara R. TLPdb: A Resource for Thaumatin-Like Proteins[J]. The Protein Journal, 2020, 39(4): 301-307.[80] Iqbal I, Tripathi R K, Wilkins O, et al. Thaumatin-like Protein (TLP) gene family in barley: Genome-wide exploration and expression analysis during germination[J]. Genes, 2020, 11(9): 1080.[81] Cvetkovi? A, Blagojevi? S, Hranisavljevi? J, et al. Effects of pathogen‐related proteins from barley grain on brewers yeast[J]. Journal of the Institute of Brewing, 1997, 103(3): 183-186.[82] Soria-Hernández C, Serna-Saldívar S, Chuck-Hernández C. Physicochemical and functional properties of vegetable and cereal proteins as potential sources of novel food ingredients[J]. Food Technology and Biotechnology, 2015, 53(3): 269-277.[83] Wang C, Tian Z, Chen L, et al. Functionality of barley proteins extracted and fractionated by alkaline and alcohol methods[J]. Cereal chemistry, 2010, 87(6): 597-606.[84] Eckert E, Wismer W, Waduthanthri K, et al. Application of Barley‐and Lentil‐Protein Concentrates in the Production of Protein‐Enriched Doughnuts[J]. Journal of the American Oil Chemists' Society, 2018, 95(8): 1027-1040.[85] Galus S, Arik Kibar E A, Gniewosz M, et al. Novel materials in the preparation of edible films and coatings—A review[J]. Coatings, 2020, 10(7): 674.[86] Song H Y, Shin Y J, Song K B. Preparation of a barley bran protein–gelatin composite film containing grapefruit seed extract and its application in salmon packaging[J]. Journal of Food Engineering, 2012, 113(4): 541-547.[87] Wang R, Tian Z, Chen L. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds[J]. International journal of pharmaceutics, 2011, 406(1-2): 153-162.[88] Wang R, Tian Z, Chen L. A novel process for microencapsulation of fish oil with barley protein[J]. Food Research International, 2011, 44(9): 2735-2741.[89] Gupta M, Abu‐Ghannam N, Gallaghar E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by‐products[J]. Comprehensive reviews in food science and food safety, 2010, 9(3): 318-328.[90] Petry-Podgórska I, ?ídková J, Flodrová D, et al. 2D-HPLC and MALDI-TOF/TOF analysis of barley proteins glycated during brewing[J]. Journal of Chromatography B, 2010, 878(30): 3143-3148. |
[1] | 高就,吴俊杰,焦文雅,陈宇洋,祝文轩,桑亚新,王向红. 6-姜烯酚玉米醇溶蛋白纳米颗粒的构建及其生物利用度分析[J]. 食品科学, 2024, 45(9): 44-50. |
[2] | 高飞,赵宇楠,张鑫,张思琳,蔡丹,刘景圣. 静磁场对蜜环菌发酵产物结构和理化特性的影响[J]. 食品科学, 2024, 45(5): 184-192. |
[3] | 刘憨憨, 徐晨, 孙明炀, 江政辉, 吕晨艳. 大麦中的重要蛋白质及其对啤酒酿造的影响研究进展[J]. 食品科学, 2023, 44(23): 194-214. |
[4] | 雷丹丹,王立敏,张文,赵培,钱晓晴,曲奥,吴子健. OSA淀粉调节玉米醇溶蛋白颗粒的界面性质及其Pickering乳液稳定性分析[J]. 食品科学, 2023, 44(20): 62-70. |
[5] | 邝吉卫,张冲,黄峻榕,蒲华寅,马文慧,闵聪,Youling L. XIONG. 不同面筋蛋白组分对小麦淀粉消化特性的影响机理[J]. 食品科学, 2023, 44(2): 18-25. |
[6] | 曹佳兴,朱海兰,王君荣,张健豪,张国治. 超声功率对小麦醇溶蛋白-膳食多酚共价复合物结构及功能性质的影响[J]. 食品科学, 2023, 44(19): 65-73. |
[7] | 杨婷婷,任李顺,陈光未,黄艾祥. 玉米醇溶蛋白负载植物甾醇纳米颗粒的制备及性能[J]. 食品科学, 2023, 44(18): 40-48. |
[8] | 吴彤,冯进,黄午阳,汪晶,李莹,陈小娥. 牛蒡果胶多糖/玉米醇溶蛋白复合颗粒稳定的Pickering乳液构建及对姜黄素的递送功效[J]. 食品科学, 2023, 44(14): 37-46. |
[9] | 崔航,王冀菲,杨建,曹冬梅,张东杰. 重金属铅对大麦苗粉蛋白质二级结构及氨基酸的影响[J]. 食品科学, 2023, 44(12): 67-73. |
[10] | 来睿,刘洁,刘亚伟. 冷冻魔芋-玉米醇溶蛋白复合凝胶对猪肉糜品质的影响[J]. 食品科学, 2023, 44(10): 100-105. |
[11] | 薛艾莲,李春翼,王启明,张驰,雷小娟,赵吉春,曾凯芳,明建. 超声处理对麦醇溶蛋白/芦丁相互作用及结构特性的影响[J]. 食品科学, 2022, 43(7): 45-51. |
[12] | 杨易俗,张讯,胡楚桓,高志明,曹际娟,杨楠,胡冰. 玉米醇溶蛋白核壳结构微粒的制备及应用研究进展[J]. 食品科学, 2022, 43(7): 349-355. |
[13] | 葛思彤,李琦,贾睿,刘伟,刘美宏,刘回民,郑明珠,蔡丹,刘景圣. 基于玉米醇溶蛋白/没食子酸复合纳米颗粒提升玉米油Pickering乳液的氧化稳定性[J]. 食品科学, 2022, 43(20): 78-85. |
[14] | 高瑾,梁宏闪,赵靖昀,代亚磊,万楚筠,周彬. 玉米醇溶蛋白-多酚相互作用及复合物制备与表征[J]. 食品科学, 2022, 43(2): 8-17. |
[15] | 李琦,葛思彤,张士禹,王天池,郑明珠,吴玉柱,赵城彬,刘景圣. 玉米后熟期间醇溶蛋白结构和理化特性[J]. 食品科学, 2022, 43(18): 16-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||