[1] Gowd V, Su H, Karlovsky P, et al.Ethyl carbamate: an emerging food and environmental toxicant[J]. Food Chemistry, 2018, 248(1):312-321. Doi: 10.1016/j.foodchem.2017.12.072. [2] SHALAMITSKIY M, TANASHCHUK T, CHERVIAK S, et al. Ethyl carbamate in fermented food products: sources of ap-pearance, hazards and methods for reducing its content[J]. Foods, 2023, 12(20): 3816-3830. DOI:10.3390/foods12203816.[3] WANG Chuan, WANG Mou, ZHANG Mengping. Ethyl carbamate in Chinese liquor (Baijiu): presence, analysis, formation, and control[J]. Applied Microbiology and Biotechnology, 2021, 105(11): 4383-4395. DOI:10.1007/s00253-021-11348-1.[4] JUNG S, KIM S, KIM I, et al. Risk assessment of ethyl carbamate in alcoholic beverages in Korea using the margin of exposure approach and cancer risk assessment[J]. Food Control, 2021, 124(107867):1-7. DOI:10.1016/j.foodcont.2021.107867.[5] Wang D, Li W, Albasha N, et al. Long-term exposure to house dust mites accelerates lung cancer development in mice. Journal of Cancer Research and Clinical Oncology, 2023, 42(1): 26-49. Doi: 10.1186/s13046-022-02587-9.[6] JUNG J, KANG Minji, HWANG H, et al. Reduction of ethyl carbamate in an alcoholic beverage by CRISPR/Cas9-based genome editing of the wild yeast[J]. Foods, 2022, 12(1): 102-114. DOI:10.3390/foods12010102.[7] WU Dianhui, XIE Wenjuan, LI Xiaomin, et al. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation[J]. Applied Microbiology and Bio-technology, 2020, 104 (10): 4435-4444. DOI:10.1007/s00253-020-10549-4.[8] ZHOU Kai, PATRIGNANI F, SUN Yuanming, et al. Inhibition of ethyl carbamate accumulation in soy sauce by adding quercetin and ornithine during thermal process[J]. Food Chemistry, 2021, 343(128528):1-9. DOI:10.1016/j.foodchem.2020.128528.[9] CHEN Yu, ZENG Weizhu, FANG Fang, et al. Elimination of ethyl carbamate in fermented foods[J]. Food Bioscience, 2022, 47(101725):1-11. DOI:10.1016/j.fbio.2022.101725.[10] WEI Tianyu, JIAO Zhihua, HU Jingjin, et al. Chinese yellow rice wine processing with reduced ethyl carbamate formation by deleting transcriptional regulator Dal80p in Saccharomyces cerevisiae[J]. Molecules, 2020, 25(16): 3580-3590. DOI:10.3390/molecules25163580.[11] Gao M, Li W, Fan L, et al.Reduced production of ethyl carbamate in wine by regulating the accumulation of arginine in Sac-charomyces cerevisiae[J]. Journal of Biotechnology, 2024, 10(385):65-74. Doi: 10.1016/j.jbiotec.2024.03.006. [12] LIU Qingtao, JIN Xuerong, FANG Fang, et al. Food-grade expression of an iron-containing acid urease in Bacillus subtilis[J]. Journal of Biotechnology, 2019, 293(1): 66-71. DOI:10.1016/j.jbiotec.2019.01.012.[13] MASAKI K. Features and application potential of microbial urethanases[J]. Applied Microbiology and Biotechnology, 2022, 106(9-10): 3431-3438. DOI:10.1007/s00253-022-11953-8.[14] XUE Siyu, DONG Naihui, XIONG Kexin, et al. The screening and isolation of ethyl-carbamate-degrading strains from fer-mented grains and their application in the degradation of ethyl carbamate in Chinese Baijiu[J]. Foods, 2023, 12(15): 2843-2856. DOI:10.3390/foods12152843.[15] MASAKI K, FUJIHARA K, KAKIZONO D, et al. Aspergillus oryzae acetamidase catalyzes degradation of ethyl carbamate[J]. Journal of Bioscience and Bioengineering, 2020, 130(6): 577-581. DOI:10.1016/j.jbiosc.2020.07.015.[16] ZHANG Xian, ZHANG Yao, FAN Tingting, et al. Structure-guided engineered urethanase from Candida parapsilosis with pH and ethanol tolerance to efficiently degrade ethyl carbamate in Chinese rice wine[J]. Ecotoxicology and Environmental Safety, 2024, 276(116335):1-8. DOI:10.1016/j.ecoenv.2024.116335.[17] YAO Xiumiao, KANG Tingting, PU Zhongji, et al. Sequence and structure-guided engineering of urethanase from Agrobacte-rium tumefaciens d3 for improved catalytic activity[J]. Journal of Agricultural and Food Chemistry, 2022, 70(23): 7267-7278. DOI:10.1021/acs.jafc.2c01406.[18] JIA Yunyao, ZHOU Jingwen, DU Guocheng, et al. Identification of an urethanase from Lysinibacillus fusiformis for degrading ethyl carbamate in fermented foods[J]. Food Bioscience, 2020, 36(100666):1-8. DOI:10.1016/j.fbio.2020.100666[19] AKUTSU-SHIGENO Y, ADACHI Y, YAMADA C, et al. Isolation of a bacterium that degrades urethane compounds and char-acterization of its urethane hydrolase[J]. Applied Microbiology and Biotechnology, 2006, 70(4): 422-9. DOI:10.1007/s00253-005-0071-1.[20] 高孝, 高洁, 刘晓宇, 等. 氨基甲酸乙酯水解酶异源表达及酶学性质分析[J]. 食品研究与开发, 2022, 43(10): 195-201. DOI:10.12161/j.issn.1005-6521.2022.10.026.[21] ZHENG Huajun, MENG Kai, LIU Jun, et al. Identification and expression of bifunctional acid urea-degrading en-zyme/urethanase from Enterobacter sp. R-SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu)[J]. Journal of the Science of Food and Agriculture, 2022, 102(11): 4599-4608. DOI:10.1002/jsfa.11818.[22] LIU Qingtao, YAO Xinhui, LIANG Qixing, et al. Molecular engineering of Bacillus paralicheniformis acid urease to degrade urea and ethyl carbamate in model Chinese rice wine[J]. Journal of Agricultural and Food Chemistry, 2018, 66(49): 13011-13019. DOI:10.1021/acs.jafc.8b04566.[23] LIU Xiaofeng, ZHANG Qian, ZHOU Nandi, et al. Expression of an acid urease with urethanase activity in E. coli and analysis of urease gene[J]. Molecular Biotechnology, 2017, 59(2-3): 84-97. DOI:10.1007/s12033-017-9994-x.[24] YANG Yuqing, KANG Zhen, ZHOU Jianli, et al. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 301-8. DOI:10.1007/s00253-014-5916-z.[25] 贾云耀, 方芳. 定点突变提高解淀粉芽孢杆菌JP-21脲酶应用特性[J]. 生物工程学报, 2020, 36(08): 1640-1649. DOI: 10.13345/j.cjb.190566.[26] DONG Naihui, XUE Siyu, GUO Hui, et al. Genetic engineering production of ethyl carbamate hydrolase and its application in degrading ethyl carbamate in Chinese liquor[J]. Foods, 2022, 11(7): 937-949. DOI:10.3390/foods11070937.[27] YU Haili, ZHANG Guihua, CAI Yanhua, et al. Altering the substituents of salicylic acid to improve Berthelot reaction for ultrasensitive colorimetric detection of ammonium and atmospheric ammonia[J]. Analytical and Bioanalytical Chemistry, 2021, 413(23):5695-5702. DOI: 10.1007/s00216-021-03485-3.[28] WU Qiuhua, ZHANG Chengnan, ZHU Weijia, et al. Improved thermostability, acid tolerance as well as catalytic efficiency of Streptomyces rameus L2001 GH11 xylanase by N-terminal replacement[J]. Enzyme and Microbial Technology, 2023, 162(110143):1-11. DOI:10.1016/j.enzmictec.2022.110143.[29] SAHU I, GLICKMAN M. Proteasome in action: substrate degradation by the 26S proteasome[J]. Biochemical Society Trans-actions, 2021, 49(2): 629-644. DOI:10.1042/BST20200382.[30] HUANG Xinyi, HOLDEN M, RAUSHEL F. Channeling of substrates and intermediates in enzyme-catalyzed reactions[J]. Annual Review of Biochemistry, 2001, 70(1): 149-180. DOI:10.1146/annurev.biochem.70.1.149.[31] PRAVDA L, BERKA K, RADKA S, et al. Anatomy of enzyme channels[J]. BMC Bioinformatics, 2014, 15(1): 379-386. DOI:10.1186/s12859-014-0379-x. |