食品科学 ›› 2021, Vol. 42 ›› Issue (2): 247-254.doi: 10.7506/spkx1002-6630-20191023-247

• 成分分析 • 上一篇    下一篇

甜叶菊废渣提取物的主要成分分析及其抗氧化作用

赵磊,潘飞,林文轩,徐美利,鲍玺,陈艳麟,王成涛,连运河   

  1. (1.北京工商大学,北京市食品添加剂工程技术研究中心,食品营养与人类健康北京高精尖创新中心,北京 100048; 2.晨光生物科技集团股份有限公司,河北 邯郸 057250)
  • 出版日期:2021-01-18 发布日期:2021-01-27
  • 基金资助:
    北京市属高校高水平教师队伍建设支持计划项目(CIT&TCD201704042;IDHT20180506); “十三五”国家重点研发计划重点专项(2018YFD0400403;2016YFD0400802); 人才培养质量建设-一流专业建设(市级)-食品科学与工程项目(PXM2019_014213_000010); 北京市科技计划项目(Z171100002217019);国家自然科学基金面上项目(31571801); 国家自然科学基金青年科学基金项目(31701575)

Main Components of Stevia Residue Extract and Their Antioxidant Activities

ZHAO Lei, PAN Fei, LIN Wenxuan, XU Meili, BAO Xi, CHEN Yanlin, WANG Chengtao, LIAN Yunhe   

  1. (1. Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; 2. Chenguang Biotech Group Co. Ltd., Handan 057250, China)
  • Online:2021-01-18 Published:2021-01-27

摘要: 研究甜叶菊废渣提取物的主要成分及其抗氧化活性,并阐明其对甜叶菊废渣提取物总抗氧化能力的贡献情况。通过高效液相色谱-串联质谱法和高效液相色谱法对甜叶菊废渣提取物的主要成分进行定性和定量分析,采用1,1-二苯基-2-三硝基苯肼法、2,2’-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐法、铁离子还原法3 种体外抗氧化方法分别对甜叶菊废渣提取物中主要成分的抗氧化活性进行测定,并采用抗氧化活性综合(antioxidant potency composite,APC)指数法进行比较分析。甜叶菊废渣提取物含有8 种主要成分分别为绿原酸、隐绿原酸、咖啡酸、异绿原酸A、异绿原酸B、异绿原酸C、槲皮苷和槲皮素,其中异绿原酸C最高((126.7±1.27)mg/g),其次为咖啡酸((97.2±0.36)mg/g)和绿原酸((46.5±0.29)mg/g)。APC指数显示8 种主要成分抗氧化活性由强到弱依次为:咖啡酸(92.56%)>槲皮素(78.31%)>异绿原酸B(62.09%)>绿原酸(58.92%)>异绿原酸A(48.15%)>异绿原酸C(36.55%)>隐绿原酸(35.5%)>槲皮苷(34.24%)。通过对模拟提取物和甜叶菊废渣提取物的抗氧化性进行比较发现,在质量浓度为50~400 μg/mL时,甜叶菊废渣提取物的抗氧化能力均强于模拟提取物。结果表明,甜叶菊废渣提取物富含绿原酸类和黄酮类化合物,具有较强的抗氧化能力,其中咖啡酸对甜叶菊废渣提取物抗氧化活性贡献最大。除8 种主要成分外,甜叶菊废渣提取物中还存在其他抗氧化活性物质。

关键词: 甜叶菊废渣提取物;抗氧化;抗氧化活性综合指数法;贡献率

Abstract: The objectives of this study were (1) to analyze the main components of stevia residue extract and their antioxidant activities and (2) to elucidate their contributions to the total antioxidant capacity of stevia residue extract. Methods: The main components of stevia residue extract were qualitatively and quantitatively analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and HPLC. The antioxidant activities were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) and ferric reducing/antioxidant power (FRAP) methods, and comparatively evaluated using antioxidant potency composite (APC) index. The eight main components of stevia residue extract were 5-CQA, 4-CQA, caffeic acid, 3,4-diCQA, 3,5-diCQA, 4,5-diCQA, quercetin-3-rhamnoside and quercetin, among which, 4,5-diCQA was the most abundant, whose content was (126.7 ± 1.27) mg/g, followed by caffeic acid ((97.2 ± 0.36) mg/g) and 5-CQA ((46.5 ± 0.29) mg/g). The results of APC indexes showed that the antioxidant activities of the main components declined in the following order: caffeic acid (92.56%) > quercetin (78.31%) > 3,4-diCQA (62.09%) > 5-CQA (58.92%) > 3,5-diCQA (48.15%) > 4,5-diCQA (36.55%) > 4-CQA (35.5%) > quercetin-3-rhamnoside (34.24%). At concentrations of 50–400 μg/mL, the antioxidant activity of stevia residue extract was stronger than that of its simulant. Stevia residue extract contained high contents of chlorogenic acids and flavonoids and exhibited strong antioxidant activity, and caffeic acid contributed the most to its antioxidant. In addition to the eight main components, other components with antioxidant activities may also exist in stevia residue extract.

Key words: stevia residue extract; antioxidant activity; antioxidant potency composite index; contribution rate

中图分类号: