[1] 李兆丰, 刘炎峻, 徐勇将, 等. 数字化食品在新时代下的发展与挑战[J]. 食品科学, 2022, 43(11): 1-8. DOI:10.7506//spkx1002-6630-20220324-292.[2] 张南, 马春晖, 周晓丽, 等. 食品科学研究现状、热点与交叉学科竞争力的文献计量学分析[J]. 食品科学, 2017, 38(03): 310-315.[3] MIN W, JIANG S, LIU L, et al. A Survey on Food Computing[J]. ACM Computing Surveys, 2019, 52(5): 1-36. DOI:10.1145/3329168.[4] 梅舒欢, 闵巍庆, 刘林虎, 等. 基于Faster R-CNN的食品图像检索和分类[J]. 南京信息工程大学学报(自然科学版), 2017, 9(06): 635-641. DOI:10.13878/j.cnki.jnuist.2017.06.007.[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031.[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI:10.1145/3065386.[7] SONG J, MIN W, LIU Y, et al. A Noise-robust Locality Transformer for Fine-grained Food Image Retrieval[C]//2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval. IEEE, 2022: 348-353. DOI:10.1109/MIPR54900.2022.00068.[8] SONG J, LI Z, MIN W, et al. Towards Food Image Retrieval via Generalization-oriented Sampling and Loss Function Design[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 20(1): 13:1-13:19. DOI:10.1145/3600095.[9] 张俊凯. 消费者对食品营养标签的使用行为及其影响因素[J]. 现代食品, 2017, (13): 64-66. DOI:10.16736/j.cnki.cn41-1434/ts.2017.13.024.[10] ZHAO Q, WANG X, LYU S, et al. A feature consistency driven attention erasing network for fine-grained image retrieval[J]. Pattern Recognition, 2022, 128: 108618. DOI:10.1016/j.patcog.2022.108618.[11] LUO X, CHEN C, ZHONG H, et al. Luo X, Wang H, Wu D, et al. A survey on deep hashing methods[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 1-50. DOI:10.1145/3532624.[12] LIU H, WANG R, SHAN S, et al. Deep Supervised Hashing for Fast Image Retrieval[C]//IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2016: 2064--2072. DOI:10.1109/CVPR.2016.227.[13] CAO Z, LONG M, WANG J, et al. Hashnet: Deep learning to hash by continuation[C]//Proceedings of the IEEE international conference on computer vision, 2017: 5608-5617. DOI:10.1109/ICCV.2017.598.[14] SU S, ZHANG C, HAN K, et al. Greedy hash: towards fast optimization for accurate hash coding in CNN[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 806-815.[15] ZHANG Z, ZOU Q, LIN Y, et al. Improved deep hashing with soft pairwise similarity for multi-label image retrieval[J]. IEEE Transactions on Multimedia, 2019, 22(2): 540-553. DOI:10.1109/TMM.2019.2929957.[16] YUAN L, WANG T, ZHANG X, et al. Central similarity quantization for efficient image and video retrieval[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020: 3083-3092. DOI:10.1109/CVPR42600.2020.00315.[17] FAN L, NG K, JU C, et al. Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020: 825-831. DOI:10.24963/IJCAI.2020/115.[18] WANG J, ZHANG T, SONG J, et al. A survey on learning to hash[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 769-790. DOI:10.1109/TPAMI.2017.2699960.[19] ZHUANG B, LIU J, PAN Z, et al. A survey on efficient training of transformers[C]//Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023: 6823-6831. DOI:10.24963/IJCAI.2023/764.[20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]//International Conference on Learning Representations, 2020.[21] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 770-778. DOI:10.1109/CVPR.2016.90.[22] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768. DOI:10.1109/CVPR.2018.00913.[23] LI Y, HE J, ZHANG T, et al. Diverse part discovery: Occluded person re-identification with part-aware transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2898-2907. DOI:10.1109/CVPR46437.2021.00292.[24] MIECH A, ALAYRAC J, LAPTEV I, et al. Thinking fast and slow: Efficient text-to-visual retrieval with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9826-9836. DOI:10.1109/CVPR46437.2021.00970.[25] CHEN Y, ZHANG S, LIU F, et al. Transhash: Transformer-based hamming hashing for efficient image retrieval[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval, 2022: 127-136. DOI:10.1145/3512527.3531405.[26] DUBEY S R, SINGH S K, CHU W T. Vision transformer hashing for image retrieval[C]//2022 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2022: 1-6. DOI:10.1109/ICME52920.2022.9859900.[27] BOSSARD L, GUILLAUMIN M, GOOL L V. Food-101–Mining Discriminative Components with Random Forests[J]. Springer International Publishing, 2014: 446-461. DOI:10.1007/978-3-319-10599-4_29.[28] CHEN J, NGO C W. Deep-based ingredient recognition for cooking recipe retrieval[C]//Proceedings of the 24th ACM international conference on Multimedia, 2016: 32-41. DOI:10.1145/2964284.2964315.[29] KAWANO Y, YANAI K. Kawano Y, Yanai K. Automatic expansion of a food image dataset leveraging existing categories with domain adaptation[C]//Computer Vision-ECCV 2014 Workshops, 2015: 3-17. DOI:10.1007/978-3-319-16199-0_1.[30] RU L, ZHENG H, ZHAN Y, et al. Token contrast for weakly-supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 3093-3102. DOI:10.1109/CVPR52729.2023.00302.[31] HENDRYCKS D, GIMPEL K. Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error Linear Units[J]. arXiv preprint arXiv:1606.08415, 2016.[32] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision, 2018: 3-19. DOI:10.1007/978-3-030-01234-2_1. |