Lei Huang Kai WangYang LIU2,Bo PANG 2, 2,Xia CHEN2,
Received:2025-05-26
Revised:2025-06-07
Online:2025-06-17
Published:2025-06-17
Contact:
Kai Wang
CLC Number:
Lei Huang Kai Wang Yang LIU Bo PANG Xia CHEN. Recent advances in food-derived antioxidant peptides and their role in improving cardiovascular health[J]. FOOD SCIENCE.
| [1]国家心血管病中心.中国心血管健康与疾病报告2023[M]. 北京: 中国协和医科大学出版社, 2024.[2]JIN S, KANG P M.A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases[J].Antioxidants (Basel), 2024, 13(8):923-923[3]MOLDOGAZIEVA N T, ZAVADSKIY S P, ASTAKHOV D V, et al.Lipid peroxidation: Reactive carbonyl species, protein/DNA adducts, and signaling switches in oxidative stress and cancer[J]. Biochemical and Biophysical Research Communications, 2023, 687: 149167. DOI:10.1016/j.bbrc.2023.149167.[J].Biochemical and Biophysical Research Communications, 2023, 687:149671-149671[4]BUGA A M, OANCEA C N.Oxidative Stress-Induced Neurodegeneration and Antioxidative Strategies:Current Stage and Future Perspectives[J].Antioxidants (Basel), 2023, 12(9):1762-1762[5]MARTíNEZ-VILLALUENGA C, HERNáNDEZ-LEDESMA B.Peptides for Health Benefits 2020[J]. International Journal of Molecular Sciences, 2022, 23(12), 6699. DOI:10.3390/ijms23126699.[J].International Journal of Molecular Sciences, 2022, 23(12):6699-6699[6]NOLFI-DONEGAN D, BRAGANZA A, SHIVA S.Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020, 37: 101674. DOI:10.1016/j.redox.2020.101674.[J].Redox Biol, 2020, 37:101674-101674[7]ZEESHAN H M, LEE G H, KIM H R, et al.Endoplasmic Reticulum Stress and Associated ROS[J].International Journal of Molecular Sciences, 2016, 17(3):327-327[8]YAN Q, LIU S, SUN Y, et al.Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease[J].Journal of Translational Medicine, 2023, 21(1):519-519[9]TOUYZ R M, ANAGNOSTOPOULOU A, CAMARGO L L, et al.Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease[J].Antioxidants& Redox Signaling, 2019, 30(7):1027-1040[10]POLITO L, BORTOLOTTI M, BATTELLI M G, et al.Xanthine oxidoreductase: A leading actor in cardiovascular disease drama[J]. Redox Biology, 2021, 48: 102195. DOI:10.1016/j.redox.2021.102195.[J].Redox Biology, 2021, 48:102195-102195[11]KODIROV S A.Comparison of Superoxide Dismutase Activity at the Cell, Organ, and Whole-Body Levels[J]. Cell Biochemistry and Biophysics, 2025.DOI:10.1007/s12013-025-01708-3.[J].Cell Biochemistry and Biophysics, 2025, :-[12]RASHEED Z.Therapeutic potentials of catalase: Mechanisms,applications,and future perspectives[J].International Journal Of Health Sciences-ijhs(Qassim), 2024, 18(2):1-6[13]TAN M, YIN Y, MA X, et al.Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis[J].Cell Death & Disease, 2023, 14(2):131-131[14]JIAO Y T, KANG Y R, WEN M Y, et al.Fast Antioxidation Kinetics of Glutathione Intracellularly Monitored by a Dual-Wire Nanosensor[J].Angewandte Chemie International Edition in English, 2023, 62(51):e202313612-e202313612[15]CHANDIMALI N, BAK S G, PARK E H, et al.Free radicals and their impact on health and antioxidant defenses: a review[J].Cell Death Discovery, 2025, 11(1):19-19[16]HECKER M, WAGNER A H.Role of protein carbonylation in diabetes[J].Journal of Inherited Metabolic Disease, 2018, 41(1):29-38[17]BATTY M, BENNETT M R, YU E.The Role of Oxidative Stress in Atherosclerosis[J].Cells, 2022, 11(23):3843-3843[18]CHEN A, HUANG H, FANG S, et al.ROS: A “booster” for chronic inflammation and tumor metastasis[J].Biochim Biophys Acta Rev Cancer, 2024, 1879(6):189175-189175[19]REDZA-DUTORDOIR M, AVERILL-BATES D A.Activation of apoptosis signalling pathways by reactive oxygen species[J].Biochimica et Biophysica Acta, 2016, 1863(12):2977-2992[20]MA Y-Y, MI C-X, CHEN J, et al.Contribution of amino acid composition and secondary structure to the antioxidant properties of tilapia skin peptides[J].Journal of Food Measurement and Characterization, 2024, 18(2):1483-1498[21]HUO J, CUI Z, ZHANG R, et al.Study on the effect and mechanism of ultrasonic-assisted enzymolysis on antioxidant peptide activity in walnuts[J]. Ultrasonics Sonochemistry, 2025, 112: 107159. DOI:10.1016/j.ultsonch.2024.107159.[J].Ultrasonics Sonochemistry, 2025, 112:107159-107159[22]FADLILLAH H N, NURAIDA L, SITANGGANG A B, et al.Antioxidant peptides produced by Pediococcus acidilactici YKP4 and Lacticaseibacillus rhamnosus BD2 in fermented soymilk made from germinated soybeans[J]. International Journal of Food Science and Technology, 2025. DOI:10.1019/ijfood/vvae002.[J].International Journal of Food Science and Technology, 2025, :-[23]MA J, SU K, CHEN M, et al.Study on the antioxidant activity of peptides from soybean meal by fermentation based on the chemical method and AAPH-induced oxidative stress[J].Food Science & Nutrition, 2023, 11(10):6634-6647[24]ZHANG Y, MA S, LI H, et al.Preparation, separation, and identification of antioxidant peptides from protein hydrolysate of Polygonatum cyrtonema Hua[J]. Food Bioscience, 2024, 62: 05351. DOI:10.1016/j.fbio.2024.105351.[J].Food Bioscience, 2024, 62:05351-05351[25]WU L-P, WU Y-X, KE X-T, et al.Isolation and antioxidant activity of peptides from Chinese hairy tofu[J].Journal of Peptide Science, 2024, 30(7):e3572-[26]BEGUM N, KHAN Q U, AL-DALALI S, et al.Process optimization and identification of antioxidant peptides from enzymatic hydrolysate of bovine bone extract, a potential source in cultured meat[J]. Frontiers in Sustainable Food Systems, 2024, 7: 1345833. DOI:10.3389/fsufs.2023.1345833.[J].Frontiers in Sustainable Food Systems, 2024, 7:1345833-1345833[27]QUAN Y, CHEN L, FAN M, et al.Antioxidant Peptides from Tiger Nut (Cyperus esculentus L): Chemical Analysis and Cytoprotective Functions on HepG2 and Caco-2 Cells[J].Foods, 2025, 14(3):349-349[28]CHENG Y-H, LIU B-Q, CUI B, et al.Alanine Substitution to Determine the Effect of LR5 and YR6 Rice Peptide Structure on Antioxidant and Anti-Inflammatory Activity[J].Nutrients, 2023, 15(10):2373-2373[29]AJIBOLA C F, FASHAKIN J B, FAGBEMI T N, et al.Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions[J].International Journal of Molecular Sciences, 2011, 12(10):6685-6702[30]CHEN Y, LIANG Y, HE H, et al.Optimisation process of walnut protein hydrolysed as an antioxidant candidate[J].Journal of Food Measurement and Characterization, 2023, 7(6):5845-5855[31]LI H, FAN H, WANG Z, et al.Effect of simulated gastrointestinal digestion on antioxidant,and anti-inflammatory activities of bioactive peptides generated in sausages fermented with Staphylococcus simulans QB7[J].Food Science and Human Wellness, 2024, 13(3):1662-1671[32]SONG S, WU Y, WANG H, et al.The effect of in vitro simulated digestion on peptide release of Torreya grandis meal proteins and bioactivity assessment of the hydrolysates[J].Journal of Food Measurement and Characterization, 2025, 19(4):2777-2790[33]ZHU D, YUAN Z, WU D, et al.The dual-function of bioactive peptides derived from oyster (Crassostrea gigas) proteins hydrolysates[J].Food Science and Human Wellness, 2023, 12(5):1609-1617[34]VIEIRA E F, DAS NEVES J, VITORINO R, et al.Impact of in Vitro Gastrointestinal Digestion and Transepithelial Transport on Antioxidant and ACE-Inhibitory Activities of Brewer’s Spent Yeast Autolysate[J].Journal of Agricultural and Food Chemistry, 2016, 64(39):7335-7341[35]XING L, LIU R, TANG C, et al.The antioxidant activity and transcellular pathway of Asp-Leu-Glu-Glu in a Caco?2 cell monolayer[J].International Journal of Food Science & Technology, 2018, 53(10):2405-2414[36]SONG P, FANG Z, WANG H, et al.Global and regional prevalence,burden,and risk factors for carotid atherosclerosis:a systematic review,meta-analysis,and modelling study[J].Lancet Glob Health, 2020, 8(5):e721-e729[37]CHENG X M, HU Y Y, YANG T, et al.Reactive Oxygen Species and Oxidative Stress in Vascular-Related Diseases[J]. Oxid Med Cell Longev, 2022, 2022: 7906091. DOI:10.1155/2022/7906091.[J].Oxid Med Cell Longev, 2022, :7906091-7906091[38]HIGASHI Y.Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease[J].Antioxidants (Basel), 2022, 11(10):1958-1958[39]NGUYEN DINH CAT A, MONTEZANO A C, BURGER D, et al.Angiotensin II,NADPH oxidase,and redox signaling in the vasculature[J].Antioxidants & Redox Signaling, 2013, 19(10):1110-1120[40]KOUMALLOS N, SIGALA E, MILAS T, et al.Angiotensin Regulation of Vascular Homeostasis:Exploring the Role of ROS and RAS Blockers[J].International Journal of Molecular Sciences, 2023, 24(15):12111-12111[41]Magliano, D.J., Boyko, E. J., & IDF Diabetes Atlas 10th edition scientific committee. (2021). IDF DIABETES ATLAS. (10th ed.). International Diabetes Federation.[J]., 2021, :-[42]ISHIBASHI Y, MATSUI T, MAEDA S, et al.Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor[J]. Cardiovascular Diabetology, 2013, 12: 125. DOI:10.1186/1475-2840-12-125.[J].Cardiovascular Diabetology, 2013, 12:125-125[43]BAHADORAN Z, MIRMIRAN P, KASHFI K, et al.Vascular nitric oxide resistance in type 2 diabetes[J].Cell Death & Disease, 2023, 14(7):410-410[44]国家卫生健康委办公厅.国家卫生健康委办公厅关于印发肥胖症诊疗指南(2024年版)的通知[EB/OL]. (2024-10-12) [2024-10-17].[J]., 2024, :-[45]MARTíNEZ-MARTíNEZ E, SOUZA-NETO F V, JIMéNEZ-GONZáLEZ S, et al.Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest[J].Antioxidants (Basel), 2021, 10(3):406-406[46]LI J, ZHANG J, YU P, et al.ROS-responsive & scavenging NO nanomedicine for vascular diseases treatment by inhibiting endoplasmic reticulum stress and improving NO bioavailability[J]. Bioactive Materials, 2024, 37: 239-252. DOI:10.1016/j.biocatmat.2024.03.010.[J].Bioactive Materials, 2024, 37:239-252[47]BATTY M, BENNETT M R, YU E.The Role of Oxidative Stress in Atherosclerosis[J].Cells, 2022, 11(23):3843-3843[48]ELSHAER A, LIZAOLA-MAYO B C.Evaluating the Role of Aspirin in Liver Disease: Efficacy,Safety,Potential Benefits and Risks[J].Life (Basel), 2024, 14(12):1701-1701[49]SUN K L, GAO M, WANG Y Z, et al.Antioxidant Peptides From Protein Hydrolysate of Marine Red Algae Eucheuma cottonii: Preparation, Identification, and Cytoprotective Mechanisms on H(2)O(2) Oxidative Damaged HUVECs[J]. Frontiers in Microbiology, 2022, 13: 791248. DOI:10.3389/fmicb.2022.791248.[J].Frontiers in Microbiology, 2022, 13:791248-791248[50]LIANG Y, LIN Q, HUANG P, et al.Rice Bioactive Peptide Binding with TLR4 To Overcome H2O2-Induced Injury in Human Umbilical Vein Endothelial Cells through NF-κB Signaling[J].Journal of Agricultural and Food Chemistry, 2018, 66(2):440-448[51]ZHANG Z, JIANG S, ZENG Y, et al.Antioxidant peptides from Mytilus Coruscus on H2O2-induced human umbilical vein endothelial cell stress[J]. Food Bioscience, 2020, 38: 100762. DOI:10.1016/j.fbio.2020.100762.[J].Food Bioscience, 2020, 38:100762-100762[52]OH Y, AHN C B, NAM K H, et al.Amino Acid Composition,Antioxidant,and Cytoprotective Effect of Blue Mussel (Mytilus edulis) Hydrolysate through the Inhibition of Caspase-3 Activation in Oxidative Stress-Mediated Endothelial Cell Injury[J].Marine Drugs, 2019, 17(2):135-135[53]CAI S Y, WANG Y M, ZHAO Y Q, et al.Cytoprotective Effect of Antioxidant Pentapeptides from the Protein Hydrolysate of Swim Bladders of Miiuy Croaker (Miichthys miiuy) against H(2)O(2) - Mediated Human Umbilical Vein Endothelial Cell (HUVEC) Injury[J].International Journal of Molecular Sciences, 2019, 20(21):5425-5425[54]OH Y, AHN C B, YOON N Y, et al.Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis) - Derived Peptides in H2O2-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells[J]. Marine Drugs, 2021, 19, 86. DOI:10.3390/md19020086.[J].Marine Drugs, 2021, 19:86-86[55]WANG C X, SONG C C, LIU X T, et al.ACE inhibitory activities of two peptides derived from Volutharpa ampullacea perryi hydrolysate and their protective effects on H(2)O(2) induced HUVECs injury[J]. Food Research International, 2022, 157: 111402. DOI:10.1016/j.foodres.2022.111402.[J].Food Research International, 2022, 157:111402-111402[56]ZHENG J, TIAN X, XU B, et al.Collagen Peptides from Swim Bladders of Giant Croaker (Nibea japonica) and Their Protective Effects against H(2)O(2)-Induced Oxidative Damage toward Human Umbilical Vein Endothelial Cells[J].Marine Drugs, 2020, 18(8):430-[57]林丽远.湛江等鞭金藻八肽抑制细胞氧化应激和血管新生机制研究[D]; 广东海洋大学, 2023. DOI:10.27788/d.cnki.ggdhy.2023.000142.[58]王祖浩.榛仁源活性肽对HUVEC细胞氧化应激损伤的保护作用及机制研究[D]; 吉林农业大学, 2018.[59]宋田源.大豆蛋白肽的降血压及改善血管功能损伤的作用研究[D]; 华南理工大学, 2022. DOI:10.27151/d.cnki.ghnlu.2022.003881.[60]WANG K, HAN L, TAN Y, et al.Generation of novel antioxidant peptides from silver carp muscle hydrolysate: Gastrointestinal digestion stability and transepithelial absorption property[J]. Food Chemistry, 2023, 403: 134136. DOI:10.1016/j.foodchem.2022.134136.[J].Food Chemistry, 2023, 403:134136-134136[61]CAI S, PAN N, XU M, et al.ACE Inhibitory Peptide from Skin Collagen Hydrolysate of Takifugu bimaculatus as Potential for Protecting HUVECs Injury[J].Marine Drugs, 2021, 19(12):655-655[62]LIU C, CHEN G, RAO H, et al.Novel Antioxidant Peptides Identified from Arthrospira platensis Hydrolysates Prepared by a Marine Bacterium Pseudoalteromonas spJS4-1 Extracellular Protease[J].Marine Drugs, 2023, 21(2):133-133[63]FAN H, BHULLAR K S, WANG Z, et al.Chicken Muscle Protein-Derived Peptide VVHPKESF Reduces TNFα-Induced Inflammation and Oxidative Stress by Suppressing TNFR1 Signaling in Human Vascular Endothelial Cells[J].Molecular Nutrition & Food Research, 2022, 66(17):e2200184-e2200184[64]CHEN S, LIN D, GAO Y, et al.A novel antioxidant peptide derived from wheat germ prevents high glucose-induced oxidative stress in vascular smooth muscle cells in vitro[J].Food Function, 2017, 8(1):142-150[65]WANG F, WENG Z, LYU Y, et al.Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress via modulation of the PKCζAMPKNOX4 pathway[J].Food Function, 2020, 11(8):6843-6854[66]LI W, LV M, ZHANG T, et al.Peptide Characterization of Bovine Myocardium Hydrolysates and Its Ameliorative Effects on Doxorubicin-Induced Myocardial Injury in H9c2 Cells and in Mice[J].Journal of Agricultural and Food Chemistry, 2023, 71(40):14562-14574[67]YU Y, CAI Y, YANG F, et al.Vascular smooth muscle cell phenotypic switching in atherosclerosis[J].Heliyon, 2024, 10(18):e37727-e37727[68]SIERRA L, FAN H, ZAPATA J, et al.Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.)scale[J]. LWT, 2021, 146: 111631. DOI:10.1016/j.lwt.2021.111631.[J]. LWT, 2021, 146:111631-111631[69]GONZáLEZ P, LOZANO P, ROS G, et al.Hyperglycemia and Oxidative Stress:An Integral,Updated and Critical Overview of Their Metabolic Interconnections[J].International Journal of Molecular Sciences, 2023, 24(11):9352-9352[70]WANG Y, XIE D, ZHAO L, et al.Anti-hypertensive and gut microbiota regulatory effects of yeast protein hydrolysate on spontaneous hypertensive rat[J]. Process Biochemistry, 2024, 140: 66-77. DOI:10.1016/j.procbio.2024.02.008.[J].Process Biochemistry, 2024, 140:66-77[71]AIRES R, GOBBI AMORIM F, C?CO L Z, et al.Use of kefir peptide (Kef-1) as an emerging approach for the treatment of oxidative stress and inflammation in 2K1C mice[J].Food Function, 2022, 13(4):1965-1974[72]JAN-ON G, TUBSAKUL A, SANGARTIT W, et al.Sang-Yod rice bran hydrolysates alleviate hypertension,endothelial dysfunction,vascular remodeling,and oxidative stress in nitric oxide deficient hypertensive rats[J].Asian Pacific Journal of Tropical Biomedicine, 2021, 11(1):10-19[73]ABREU E D L, RODRIGUES MORO C, HASSAN HUSEIN KANAAN S, et al.ROS Suppression by Egg White Hydrolysate in DOCA-Salt Rats—An Alternative Tool against Vascular Dysfunction in Severe Hypertension[J].Antioxidants, 2022, 11(9):1713-1713[74]GARMIDOLOVA A, DESSEVA I, MIHAYLOVA D, et al.Bioactive Peptides from Lupinus sppSeed Proteins-State-of-the-Art and Perspectives[J].Applied Sciences, 2022, 12(8):3766-3766[75]LIU H, YANG Y, LIU Y, et al.Various bioactive peptides in collagen hydrolysate from salmo salar skin and the combined inhibitory effects on atherosclerosis in vitro and in vivo[J]. Food Research International, 2022, 157: 111281. DOI:10.1016/j.foodres.2022.111281.[J].Food Research International, 2022, 157:111281-111281[76]JIANG N, ZHANG S, ZHU J, et al.Hypoglycemic,hypolipidemic and antioxidant effects of peptides from red deer antlers in streptozotocin-induced diabetic mice[J].Tohoku Journal of Experimental Medicine, 2015, 236(1):71-79[77]GARCéS-RIMóN M, GONZáLEZ C, HERNANZ R, et al.Egg white hydrolysates improve vascular damage in obese Zucker rats by its antioxidant properties[J].Journal of Food Biochemistry, 2019, 43(12):e13062-e13062[78]MANEESAI P, WATTANATHORN J, POTUE P, et al.Cardiovascular complications are resolved by tuna protein hydrolysate supplementation in rats fed with a high-fat diet[J].Scientific Reports, 2023, 13(1):12280-12280[79]SENAPHAN K, SANGARTIT W, PAKDEECHOTE P, et al.Rice bran protein hydrolysates reduce arterial stiffening,vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet[J].The European Journal of Nutrition, 2018, 57(1):219-230[80]DING Y, KO S C, MOON S H, et al.Protective Effects of Novel Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler Against Oxidative Stress in Chang Liver Cells in Vitro and in a Zebrafish Model In Vivo[J].International Journal of Molecular Sciences, 2019, 20(20):5187-5187[81]李艳.牡丹籽蛋白水解物对斑马鱼损伤及油脂氧化的保护作用研究 [D]; 齐鲁工业大学, 2022. DOI:10.27278/d.cnki.gsdqc.2022.000088.[82]ESCOBAR A G, RIZZETTI D A, PIAGETTE J T, et al.Antioxidant Properties of Egg White Hydrolysate Prevent Mercury-Induced Vascular Damage in Resistance Arteries[J]. Frontiers in Physiology, 2020, 11: 595767. DOI:10.3389/fphys.2020.595767.[J].Frontiers in Physiology, 2020, 11:595767-595767[83]LIMóN-PACHECO J, GONSEBATT M E.The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress[J].Mutation Research – Genetic Toxicology and Environmental Mutagenesis, 2009, 674(1-2):137-147[84]ZHU Z, SHI Z, XIE C, et al.A novel mechanism of Gamma-aminobutyric acid (GABA) protecting human umbilical vein endothelial cells (HUVECs) against H(2)O(2)-induced oxidative injury[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 217: 68-75. DOI:10.1016/j.cbpc.2018.11.018.[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 217:68-75[85]PECCHILLO CIMMINO T, AMMENDOLA R, CATTANEO F, et al.NOX Dependent ROS Generation and Cell Metabolism[J].International Journal of Molecular Sciences, 2023, 24(3):2086-2086[86]LAMBETH J D.NOX enzymes and the biology of reactive oxygen[J].Nature Reviews Immunology, 2004, 4(3):181-189[87]WU P, ZHANG X, DUAN D, et al.Organelle-Specific Mechanisms in Crosstalk between Apoptosis and Ferroptosis[J].Oxidative Medicine and Cellular Longevity, 2023, 2023(1):3400147-3400147[88]MORGAN M J, LIU Z-G.Crosstalk of reactive oxygen species and NF-κB signaling[J].Cell Research, 2011, 21(1):103-115[89]CHIPUK J E, KUWANA T, BOUCHIER-HAYES L, et al.Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis[J].Science, 2004, 303(5660):1010-1014[90]AVERILL-BATES D.Reactive oxygen species and cell signalingReview[J].Biochimica et Biophysica Acta(BBA) - Molecular Cell Research, 2024, 1871(2):119573-119573 |
| [1] | DENG Shijie, LIU Ling, HUANG Ju, FENG Fengqin, ZHAO Minjie, DU Juan. Sleep-Aiding Effect of Casein-Derived Peptide TPTLN and Its Underlying Mechanism [J]. FOOD SCIENCE, 2025, 46(3): 119-127. |
| [2] | XU Feiran, WANG Yu, WANG Xiaojing, CUI Wei, WANG Yongkun, ZHOU Hui, WANG Zhaoming, CAI Kezhou, ZHANG Bao, XU Baocai. Hemoglobin-Derived Antioxidant Peptides from Beef Cattle in Ningxia: Identification Based on Computerized Screening and Molecular Docking [J]. FOOD SCIENCE, 2025, 46(2): 108-117. |
| [3] | WANG Jie, WANG Jinmei, LIU Hui, LIU Xuguang, GUO Wenjing, HE Hongping. Exploring the Hepatoprotective Effect of Agaricus bisporus Based on Network Pharmacology [J]. FOOD SCIENCE, 2025, 46(2): 126-137. |
| [4] | NAN Xin, ZHU Zhenbao, LIANG Lei, FU Yuyu, GU Haofeng, MA Guohao, WANG Zhuoying. Research Progress on Antioxidant Peptides from Edible Mushrooms [J]. FOOD SCIENCE, 2025, 46(12): 316-324. |
| [5] | FAN Shengyu, WANG Lei, GAO Xin, FU Xiaoting. Effect of Lactobacillus Fermentation on Structure and Bioactivity of Fucoidan from Saccharina japonica [J]. FOOD SCIENCE, 2025, 46(10): 59-69. |
| [6] | DUAN Hao, SONG Wei, WANG Feng, YAN Wenjie. Advances in the Application of Carotenoids in Health Foods for Relieving Visual Fatigue [J]. FOOD SCIENCE, 2024, 45(6): 317-325. |
| [7] | SHU Zhiqiang, LIU Fang, JING Yuexin, JIAO Chunna, JI Yizhi, WANG Maojian, WANG Gongming, ZHANG Jian. Research Progress on Structure, Activity and Structure-Activity Relationship of Sea Cucumber Polysaccharides [J]. FOOD SCIENCE, 2024, 45(20): 354-365. |
| [8] | ZHU Zhenzhu, YAO Mingjiang, LIAO Liuyue, GAO Mingwei, ZHANG Ziwen. Research Progress in the Anti-aging Effects of Phytochemicals [J]. FOOD SCIENCE, 2024, 45(17): 265-276. |
| [9] | CHENG Xinyu, ZHANG Henan, PAN Yue, YUAN Ziyi, WU Junrui, WU Rina. Research Progress in the Action Mechanism of bifidobacteria in Alleviating Ulcerative Colitis [J]. FOOD SCIENCE, 2024, 45(15): 272-281. |
| [10] | FANG Zichao, ZHOU Junhan, ZHENG Jianxian. Structure-Activity Relationship of the Bitterness Inhibitor Ferulic Acid [J]. FOOD SCIENCE, 2024, 45(14): 14-22. |
| [11] | LU Yitao, TIAN Cuifang, WU Qian, LIU Jiawen, LIU Jing, DUAN Weidan, XU Huan, ZHOU Lifa, PAN Yingjie, ZHAO Yong, ZHANG Zhaohuan. Application and Prospect of New Functional Ice in Food Sterilization and Preservation [J]. FOOD SCIENCE, 2024, 45(14): 267-276. |
| [12] | YIN Shulei, DU Xiang, ZHANG Xiaoxi, LIU Lu, YI Junjie, WANG Yanfei. Research Progress in the Antioxidant Mechanism of Lactic Acid Bacteria and Its Application in the Food Field [J]. FOOD SCIENCE, 2024, 45(13): 345-355. |
| [13] | YUAN Chengzhi, WANG Faxiang, HUANG Yiqun, YU Jian, LIU Yongle, SHI Yi, WU Jinhong, WANG Shaoyun, LI Xianghong. Effects of Antifreeze Peptide Properties on Myofibrillar Proteins in Frozen Surimi Investigated Using Least Absolute Shrinkage and Selection Operator Regression Model [J]. FOOD SCIENCE, 2024, 45(13): 8-16. |
| [14] | GUO Xingchen, LI Yuhao, MA Jinpu, ZHANG Yuxuan, LI Huaxin, YANG Jutian, FAN Peiru, GAO Dandan. Quantitative Structure-Activity Relationship Analysis of Angiotensin-Converting Enzyme Inhibitory Pentapeptides Based on Amino Acid Descriptors [J]. FOOD SCIENCE, 2024, 45(13): 38-48. |
| [15] | ZHU Xiuqing, AN Yuexin, HE Yang, HUANG Yuyang, ZHU Ying. Research Progress in Properties and Applications of Soybean Protein-Stabilized Emulsion Gels [J]. FOOD SCIENCE, 2024, 45(11): 333-342. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||