| [1] Navik U, Sheth V G, Khurana A, et al. Methionine as a double-edged sword in health and disease: Current perspective and future challenges[J]. Ageing Research Reviews, 2021, 72: 101500. DOI:10.1016/j.arr.2021.101500.[2] Lee H S, Hwang B J. Methionine biosynthesis and its regulation in Corynebacterium glutamicum : parallel pathways of transsulfuration and direct sulfhydrylation[J]. Applied Microbiology and Biotechnology, 2003, 62(5-6): 459-467. DOI:10.1007/s00253-003-1306-7.[3] 李莹.基于代谢工程选育谷氨酸棒杆菌L-蛋氨酸高产菌[D]. 哈尔滨工业大学, 2016: 3-5.[4] 秦天宇.代谢工程改造谷氨酸棒杆菌生产L-甲硫氨酸[D]. 江南大学, 2014: 1-4.[5] Kumar D, Gomes J. Methionine production by fermentation[J]. Biotechnology Advances, 2005, 23(1): 41-61. DOI:10.1016/j.biotechadv.2004.08.005.[6] Thomas D, Barbey R, Surdin-Kerja Y. Evolutionary relationships between yeast and bacterial homoserine dehydrogenases[J]. Febs Letters, 1993: 289-293. DOI:10.1016/0014-5793(93)81359-8.[7] Akai S, Ikushiro H, Sawai T, et al. The crystal structure of homoserine dehydrogenase complexed with L-homoserine and NADPH in a closed form[J]. Journal of biochemistry, 2018. DOI:10.1093/jb/mvy094.[8] Berghuis A M, DeLaBarre B, Thompson P R, et al. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases[J]. Nature structural & molecular biology, 2000, 7(3): 238-244. DOI:10.1038/73359.[9] Hayashi J, Inoue S, Kim K, et al. Crystal Structures of a Hyperthermophilic Archaeal Homoserine Dehydrogenase Suggest a Novel Cofactor Binding Mode for Oxidoreductases[J]. Scientific Reports, 2015, 5(1). DOI:10.1038/srep11674.[10] Tomonaga Y, Kaneko R, Goto M, et al. Structural insight into activation of homoserine dehydrogenase from the archaeon Sulfolobus tokodaii via reduction[J]. Biochemistry and Biophysics Reports, 2015, 3: 14-17. DOI:10.1016/j.bbrep.2015.07.006.[11] Navratna V, Reddy G, Gopal B. Structural basis for the catalytic mechanism of homoserine dehydrogenase[J]. Acta Crystallographica Section D Biological Crystallography, 2015, 71(5): 1216-1225. DOI:10.1107/S1399004715004617.[12] Kim D H, Nguyen Q T, Ko G S, et al. Molecular and Enzymatic Features of Homoserine Dehydrogenase fromBacillus subtilis[J]. Journal of Microbiology and Biotechnology, 2020, 30(12): 1905-1911. DOI:10.4014/jmb.2004.04060.[13] Tang W, Guo M, Jiang X, et al. Expression, purification, and biochemical characterization of an NAD-dependent homoserine dehydrogenase from the symbiotic Polynucleobacter necessarius subsp. necessarius.[J]. Protein expression and purification, 2021, 188: 105977. DOI:10.1016/j.pep.2021.105977.[14] Tang W, Dong X, Meng J, et al. Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD+-dependent homoserine dehydrogenase from the human pathogen Neisseria gonorrhoeae[J]. Protein Expression and Purification, 2021, 186: 105909. DOI:10.1016/j.pep.2021.105909.[15] Ogata K, Yajima Y, Nakamura S, et al. Inhibition of homoserine dehydrogenase by formation of a cysteine-NAD covalent complex[J]. Scientific Reports, 2018, 8(1). DOI:10.1038/s41598-018-24063-1.[16] Kubota T, Kurihara E, Watanabe K, et al. Conformational changes in the catalytic region are responsible for heat-induced activation of hyperthermophilic homoserine dehydrogenase[J]. Communications Biology, 2022, 5(1). DOI:10.1038/s42003-022-03656-7.[17] Li N, Zeng W, Zhou J, et al. O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1). DOI:10.1186/s13068-022-02114-0.[18] 申术霞, 朱运明, 闵伟红, 等. 北京棒杆菌AS1.299高丝氨酸脱氢酶突变体L200F/D215K的异源表达及酶学性质[J]. 微生物学报, 2014, 54(10): 1178-1184. DOI:10.13343/j.cnki.wsxb.2014.10.010.[19] 樊占青. 北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶催化位点空间改造及别构调控机制研究[D]. 长春: 吉林农业大学,2021: 8-9.[20] 任军. 天冬氨酸激酶定点突变及酶学性质表征[D]. 长春: 吉林农业大学,2013: 44-45.[21] 王亚南.北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶催化活性位点的空间改造及工程菌构建[D]. 吉林农业大学, 2021: 13-16.[22] 申术霞.北京棒杆菌高丝氨酸脱氢酶突变体的异源表达及酶学性质表征[D]. 吉林农业大学, 2014: 15-16.[23] 许金坤.北京棒杆菌AS1.299高丝氨酸脱氢酶定点突变及酶学性质表征[D]. 吉林农业大学, 2013: 23-26.[24] Bailey S F, Alonso Morales L A, Kassen R. Effects of Synonymous Mutations beyond Codon Bias: The Evidence for Adaptive Synonymous Substitutions from Microbial Evolution Experiments[J]. Genome Biology and Evolution, 2021, 13(9). DOI:10.1093/gbe/evab141.[25] Brule C E, Grayhack E J. Synonymous Codons: Choose Wisely for Expression[J]. Trends in Genetics, 2017, 33(4): 283-297. DOI:10.1016/j.tig.2017.02.001.[26] Supek F. The Code of Silence: Widespread Associations Between Synonymous Codon Biases and Gene Function[J]. Journal of Molecular Evolution, 2016, 82(1): 65-73. DOI:10.1007/s00239-015-9714-8.[27] 郑志强.耐热性细菌漆酶的高效表达及其在纸浆生物漂白中的应用[D]. 江南大学, 2015: 35-36.[28] 董聪, 高庆华, 王玥, 等. 基于密码子优化的FAD依赖葡萄糖脱氢酶在毕赤酵母中的高效表达及酶学性质[J]. 生物技术通报, 2019, 35(07): 114-120. DOI:10.13560/j.cnki.biotech.bull.1985.2018-0941. |