FOOD SCIENCE ›› 2025, Vol. 46 ›› Issue (22): 0-0.
• Food Engineering •
Received:2025-05-13
Revised:2025-09-12
Online:2025-11-25
Published:2025-11-11
CLC Number:
| [1] ROPEJKO K, TWARUZEK M. Zearalenone and its metabolites-general overview, occurrence, and toxicity[J]. Toxins, 2021, 13 (1): 35. DOI:10.3390/toxins13010035[2] LLORENS P, JUAN-GARCIA A, JUAN C, et al. Mycotoxins contamination and their possible mitigation strategies in plant-based meat alternatives (PBMAs): A review[J]. Food Bioscience, 2024, 62: 105230. DOI:10.1016/j.fbio.2024.105230[3] GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed: A ten-year survey[J]. Toxins, 2019, 11 (7): 375. DOI:10.3390/toxins11070375[4] JOHNS L E, BEBBER D P, GURR S J, et al. Emerging health threat and cost of Fusarium mycotoxins in European wheat[J]. Nature Food, 2022, 3 (12): 1014-1019. DOI:10.1038/s43016-022-00655-z[5] LI S Y, ZHANG Y Q, LIU X J, et al. The economic, health, and environmental impacts of both visible and invisible maize losses in Jilin, China[J]. Journal of Cleaner Production, 2024, 476: 143770. DOI:10.1016/j.jclepro.2024.143770[6] ROACH C M, MAYORGA E J, BAUMGARD L H, et al. Phenotypic, endocrinological, and metabolic effects of zearalenone exposure and additive effect of heat stress in prepubertal female pigs[J]. Journal of Thermal Biology, 2024, 119: 103742. DOI:10.1016/j.jtherbio.2023.103742[7] CLAEYS L, ROMANO C, RUYCK K D, et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19 (4): 1449-1464. DOI:10.1111/1541-4337.12567[8] LEE H J, RYU D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence[J]. Journal of Agricultural and Food Chemistry, 2017, 65 (33): 7034-7051. DOI:10.1021/acs.jafc.6b04847[9] ALI O, MéZES M, BALOGH K, et al. The effects of mixed Fusarium mycotoxins at EU-permitted feed levels on weaned piglets' tissue lipids[J]. Toxins, 2021, 13 (7): 444. DOI:10.3390/toxins13070444[10] GHAFARI N, PAIMARD G, SADEGHI E, et al. Evaluation of nano-silica, microwave heating, and ultraviolet irradiation effects on zearalenone detoxification in sunflower oils[J]. World Mycotoxin Journal, 2022, 15 (4): 369-381. DOI:10.3920/wmj2021.2733[11] YU M H, PANG Y H, YANG C, et al. Electrochemical oxidation diminished toxicity of zearalenone significantly, while reduction increased[J]. Food Chemistry, 2023, 429: 136768. DOI:10.1016/j.foodchem.2023.136768[12] XING X Y, CHEN X W, YOU X H, et al. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design[J]. Food Chemistry, 2024, 456: 140088. DOI:10.1016/j.foodchem.2024.140088[13] CHANDRAVARNAN P, AGYEI D, ALI A. Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review[J]. Trends in Food Science and Technology, 2022, 124: 278-295. DOI:10.1016/j.tifs.2022.04.020[14] LI L, SHAN X X, ZHANG Y C, et al. Application in photocatalytic degradation of zearalenone based on graphitic carbon nitride[J]. Luminescence, 2022, 37 (2): 190-198. DOI:10.1002/bio.4160[15] FEIZOLLAHI E, ROOPESH M S. Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors[J]. Food and Bioprocess Technology, 2021, 14 (11): 2107-2119. DOI:10.1007/s11947-021-02692-1[16] LUO X H, QI L J, LIU Y T, et al. Effects of electron beam irradiation on zearalenone and ochratoxin A in naturally contaminated corn and corn quality parameters[J]. Toxins, 2017, 9 (3): 84. DOI:10.3390/toxins9030084[17] LUO X H, ZHAI Y H, QI L J, et al. Influences of electron beam irradiation on the physical and chemical properties of zearalenone- and ochratoxin A-contaminated corn and in vivo toxicity assessment[J]. Foods, 2020, 9 (3): 376. DOI:10.3390/foods9030376[18] ZHANG W, SUN C P, WANG W, et al. A novel method for accelerating zearalenone degradation using ultraviolet light and atmospheric cold plasma: Insights into their synergistic mechanism[J]. Food chemistry, 2025, 485: 144495. DOI:10.1016/j.foodchem.2025.144495[19] AN N N, SHANG N, ZHAO X, et al. Occurrence, regulation, and emerging detoxification techniques of aflatoxins in maize: A review[J]. Food Reviews International, 2024, 40 (1): 92-114. DOI:10.1080/87559129.2022.2158339[20] EMíDIO E S, CALISTO V, MARCHI M R R D, et al. Photochemical transformation of zearalenone in aqueous solutions under simulated solar irradiation: Kinetics and influence of water constituents[J]. Chemosphere, 2017, 169: 146-154. DOI:10.1016/j.chemosphere.2016.11.042[21] HERNáNDEZ-SáNCHEZ H. Effect of nonthermal processing on the structural and techno-functional properties of bovine α-lactalbumin[J]. Food Engineering Reviews, 2023, 15 (2): 187-195. DOI:10.1007/s12393-023-09340-8[22] 全国粮油标准化技术委员会. 玉米储存品质判定规则: GB/T 20570-2015[S]. 北京: 中国标准出版社, 2015: 2-6.[23] WANG F, ZENG J, TIAN X L, et al. Effect of ultrafine grinding technology combined with high-pressure, microwave and high-temperature cooking technology on the physicochemical properties of bean dregs[J]. Lwt-Food Science and Technology, 2022, 154: 112810. DOI:10.1016/j.lwt.2021.112810[24] GAO R Q, ZHANG L Y, YU R Z. Detection of zearalenone in miscellaneous beans by functionalized SERS sensor based on sea urchin aptamer[J]. Food Chemistry, 2024, 460. DOI:10.1016/j.foodchem.2024.140394[25] POPOVI? V, FAIRBANKS N, PIERSCIANOWSKI J, et al. Feasibility of 3D UV-C treatment to reduce fungal growth and mycotoxin loads on maize and wheat kernels[J]. Mycotoxin Research, 2018, 34 (3): 211-221. DOI:10.1007/s12550-018-0316-3[26] BUTSCHER D, LOON H V, WASKOW A, et al. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge[J]. International Journal of Food Microbiology, 2016, 238: 222-232. DOI:10.1016/j.ijfoodmicro.2016.09.006[27] ZHI A, SHI S S, LI Q, et al. Aflatoxins degradation and quality evaluation in naturally contaminated rice by dielectric barrier discharge cold plasma[J]. Innovative Food Science and Emerging Technologies, 2023, 88: 103426. DOI:10.1016/j.ifset.2023.103426[28] GILS C A J V, HOFMANN S, BOEKEMA B K H L, et al. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet[J]. Journal of Physics D-Applied Physics, 2013, 46 (17): 175203. DOI:10.1088/0022-3727/46/17/175203[29] REUTER S, WINTER J, ISéNI S, et al. The influence of feed gas humidity versus ambient humidity on atmospheric pressure plasma jet-effluent chemistry and skin cell viability[J]. Ieee Transactions on Plasma Science, 2015, 43 (9): 3185-3192. DOI:10.1109/tps.2014.2361921[30] KATSCH H M, STURM T, QUANDT E, et al. Negative ions and the role of metastable molecules in a capacitively coupled radiofrequency excited discharge in oxygen[J]. Plasma Sources Science and Technology, 2000, 9 (3): 323-330. DOI:10.1088/0963-0252/9/3/310[31] BRUGGEMAN P, IZA F, GUNS P, et al. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission[J]. Plasma Sources Science and Technology, 2010, 19 (1): 015016. DOI:10.1088/0963-0252/19/1/015016[32] MURANYI P, WUNDERLICH J, HEISE M. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma[J]. Journal of Applied Microbiology, 2008, 104 (6): 1659-1666. DOI:10.1111/j.1365-2672.2007.03691.x[33] LOUREIRO A D C, SOUZA F D C D A, SANCHES E A, et al. Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds[J]. Food Research International, 2021, 147: 110462. DOI:10.1016/j.foodres.2021.110462[34] SHISHIR M R I, KARIM N, BAO T, et al. Cold plasma pretreatment - A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom[J]. Drying Technology, 2020, 38 (16): 2134-2150. DOI:10.1080/07373937.2019.1683860[35] SULTAN S M E, YOUSEF A F, ALI W M, et al. Cold atmospheric plasma enhances morphological and biochemical attributes of tomato seedlings[J]. Bmc Plant Biology, 2024, 24 (1): 420. DOI:10.1186/s12870-024-04961-5[36] KHETO A, BEHERA A, MANIKPURI S, et al. Atmospheric cold plasma pretreatment on germination of guar bean seeds: Effect on germination parameters, bioactive compounds, antinutritional factors, functional groups, and in vitro protein digestibility[J]. Legume Science, 2024, 6 (e251). DOI:10.1002/leg3.251[37] OLATUNDE O O, HEWAGE A, DISSANAYAKE T, et al. Cold atmospheric plasma-induced protein modification: Novel nonthermal processing technology to improve protein quality, functionality, and allergenicity reduction[J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22 (3): 2197-2234. DOI:10.1111/1541-4337.13144[38] CHANIOTI S, KATSENIOS N, EFTHIMIADOU A, et al. Pre-sowing treatment of maize seeds by cold atmospheric plasma and pulsed electromagnetic fields: Effect on plant and kernels characteristics[J]. Australian Journal of Crop Science, 2021, 15 (2): 251-259. DOI:10.21475/ajcs.21.15.02.p2932[39] EAZHUMALAI G, KALAIVENDAN R G T, ANNAPURE U S. Effect of atmospheric pin-to-plate cold plasma on oat protein: Structural, chemical, and foaming characteristics[J]. International Journal of Biological Macromolecules, 2023, 242 (3): 125103. DOI:10.1016/j.ijbiomac.2023.125103[40] BAEK K H, HEO Y S, YIM D G, et al. Influence of atmospheric-pressure cold plasma-induced oxidation on the structure and functional properties of egg white protein[J]. Innovative Food Science and Emerging Technologies, 2021, 74: 102869. DOI:10.1016/j.ifset.2021.102869[41] CVJETKOVI? V G, MARJANOVI?-BALABAN ?, VUJADINOVI? D, et al. Investigation of the effect of cold atmospheric plasma on gliadins and glutenins extracted from wheat flour samples[J]. Journal of Food Processing and Preservation, 2022, 46 (10): e15789. DOI:10.1111/jfpp.15789[42] NG S W, LU P, RULIKOWSKA A, et al. The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins[J]. Food Chemistry, 2021, 342: 128283. DOI:10.1016/j.foodchem.2020.128283[43] BRAHMA D, GUPTA A N. Oxidative stress via UVC irradiation on the structural rearrangement of hen egg white lysozyme[J]. Physical Chemistry Chemical Physics, 2025, 27 (2): 1119-1131. DOI:10.1039/d4cp03653k[44] SOFI S A, RAFIQ S, MAJID D, et al. Irradiation-induced modifications of apple seed protein isolate: Exploring techno-functional, structural, thermal, and morphological characteristics[J]. Radiation Physics and Chemistry, 2024, 225: 112139. DOI:10.1016/j.radphyschem.2024.112139[45] TRIPATHI A, MEENA R, SOBHANAN A, et al. Influence of ultraviolet-C irradiation treatment on quality and shelf life of mung bean sprouts during storage[J]. Italian Journal of Food Science, 2024, 36 (4): 180-192. DOI:10.15586/ijfs.v36i4.2619[46] 李金东, 张忠杰, 胡科, 等. UV-LED和冷等离子体对染菌玉米及其附着黄曲霉的影响[J]. 粮油食品科技, 2025, 33 (2): 129-137. DOI:10.16210/j.cnki.1007-7561.2025.02.018[47] SANTOS L C O, CUBAS A L V, MOECKE E H S, et al. Use of cold plasma to inactivate Escherichia coli and physicochemical evaluation in pumpkin puree[J]. Journal of Food Protection, 2018, 81 (11): 1897-1905. DOI:10.4315/0362-028x.Jfp-18-136[48] BERMúDEZ-AGUIRRE D, WEMLINGER E, PEDROW P, et al. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce[J]. Food Control, 2013, 34 (1): 149-157. DOI:10.1016/j.foodcont.2013.04.022[49] LACOMBE A, NIEMIRA B A, GURTLER J B, et al. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes[J]. Food Microbiology, 2015, 46: 479-484. DOI:10.1016/j.fm.2014.09.010[50] MULITERNO M M, RODRIGUES D, LIMA F S D, et al. Conversion/degradation of isoflavones and color alterations during the drying of okara[J]. Lwt-Food Science and Technology, 2017, 75: 512-519. DOI:https://doi.org/10.1016/j.lwt.2016.09.031[51] GOK S B, YIKMIS S, LEVENT O, et al. Impact of UV-C and thermal pasteurization on bioactive compounds, sensory characteristics and aroma profile of traditionally produced koruk vinegar[J]. Journal of Food Safety and Food Quality-Archiv Fur Lebensmittelhygiene, 2022, 73 (5): 158-167. DOI:10.53194/0003-925x-73-158[52] YIKMIS S, GOK S B, LEVENT O, et al. Moderate temperature and UV-C light processing of Uruset apple juice: Optimization of bioactive components and evaluation of the impact on volatile profile, HMF and color[J]. Journal of Food Process Engineering, 2021, 44 (12): e13893. DOI:10.1111/jfpe.13893[53] JADDU S, PRADHAN R C, DWIVEDI M. Effect of multipin atmospheric cold plasma discharge on functional properties of little millet (Panicum miliare) flour[J]. Innovative Food Science and Emerging Technologies, 2022, 77: 102957. DOI:10.1016/j.ifset.2022.102957[54] KAMSEU-MOGO J-P, SOULIER M, KAMGANG-YOUBI G, et al. Advancements in maize cultivation: Synergistic effects of dry atmospheric plasma combined with plasma-activated water[J]. Journal of Physics D-Applied Physics, 2025, 58 (5): 055201. DOI:10.1088/1361-6463/ad8acf[55] PALACIO J A, CADAVID B E, QUINTERO E G. Evaluating the impact of UVC exposure on forage maize seeds under hydroponic condition[J]. Indian Journal of Agricultural Research, 2024, 58 (Special Issue): 1048-1052. DOI:10.18805/IJARe.AF-816[56] SEMENOV A, SAKHNO T, HORDIEIEVA O, et al. Pre-sowing treatment of vetch hairy seeds, vicia villosa using ultraviolet irradiation[J]. Global Journal of Environmental Science and Management, 2021, 7 (4): 555-564. DOI:10.22034/gjesm.2021.04.05[57] PAWLAT J, STAREK A, SUJAK A, et al. Effects of atmospheric pressure plasma generated in GlidArc reactor on Lavatera thuringiaca L. seeds' germination[J]. Plasma Processes and Polymers, 2018, 15 (2): e1700064. DOI:10.1002/ppap.201700064[58] RECEK N, ZAPLOTNIK R, VESEL A, et al. Germination and growth of plasma-treated maize seeds planted in fields and exposed to realistic environmental conditions[J]. International Journal of Molecular Sciences, 2023, 24 (7): 6868. DOI:10.3390/ijms24076868[59] POURBAGHER M, POURBAGHER R, ABBASPOUR-FARD M H. Cold plasma technique in controlling contamination and improving the physiological processes of cereal grains[J]. Journal of Agricultural Machinery, 2024, 14 (1): 83-104. DOI:10.22067/jam.2023.84647.1193[60] KAMSEU-MOGO J-P, KAMGANG-YOUBI G, DJEPANG S A, et al. Treatment of maize seeds (Zea mays) by nonthermal plasma generated by gliding electric discharge for application in agriculture[J]. Ieee Transactions on Plasma Science, 2021, 49 (8): 2318-2328. DOI:10.1109/tps.2021.3094935[61] KARMAKAR S, BILLAH M, HASAN M, et al. Impact of LFGD (Ar+O2) plasma on seed surface, germination, plant growth, productivity and nutritional composition of maize (Zea mays L.)[J]. Heliyon, 2021, 7 (3): e06458. DOI:10.1016/j.heliyon.2021.e06458[62] PRERNA D I, GOVINDARAJU K, TAMILSELVAN S, et al. Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays)[J]. Plant Physiology and Biochemistry, 2021, 162: 564-580. DOI:10.1016/j.plaphy.2021.03.023[63] WANG Y N, YAO Q, LI X J, et al. Study of the effects of plasma pretreatment on the microstructure of peanuts[J]. Applied Sciences-Basel, 2024, 14 (17): 7752. DOI:10.3390/app14177752[64] SOHAN M S R, HASAN M, HOSSAIN M F, et al. Low-frequency glow discharge (LFGD) plasma treatment enhances maize (Zea mays L.) seed germination, agronomic traits, enzymatic activities, and nutritional properties[J]. Chemical and Biological Technologies in Agriculture, 2022, 9 (1). DOI:10.1186/s40538-021-00275-y[65] MEHTA D, CHATURVEDI K, SIDANA A, et al. Processing treatment of atmospheric- and vacuum-cold plasma improved physical properties, glucose diffusion and fermentability of dietary fibers extracted from de-oiled rice and corn bran[J]. Bioactive Carbohydrates and Dietary Fibre, 2022, 28. DOI:10.1016/j.bcdf.2022.100326[66] ZHANG S N, WANG T S. Preparation of enzymolysis porous corn starch composite microcapsules embedding organic sunscreen agents and its UV protection performance and stability[J]. Carbohydrate Polymers, 2023, 314: 120903. DOI:10.1016/j.carbpol.2023.120903[67] SIFUENTES-NIEVES I, MENDEZ-MONTEALVO G, FLORES-SILVA P C, et al. Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content[J]. Innovative Food Science and Emerging Technologies, 2021, 68: 102630. DOI:10.1016/j.ifset.2021.102630[68] HERNANDEZ-PEREZ P, FLORES-SILVA P C, VELAZQUEZ G, et al. Rheological performance of film-forming solutions made from plasma-modified starches with different amylose/amylopectin content[J]. Carbohydrate Polymers, 2021, 255: 117349. DOI:10.1016/j.carbpol.2020.117349[69] BAHMANPOUR H, ASEFI N, ALIZADEH A, et al. Assessment of the impact of cold plasma technology on physicochemical properties of corn starch flour and the associated modified corn starch incorporated into milk dessert[J]. Heliyon, 2024, 10 (17): e37399. DOI:10.1016/j.heliyon.2024.e37399[70] CHEN C S, TONG F, SUN R H, et al. Plasma effects on properties and structure of corn starch: Characterization and analysis[J]. Foods, 2023, 12 (21): 4042. DOI:10.3390/foods12214042[71] SALVADOR-REYES R, REBELLATO A P, PALLONE J A L, et al. Kernel characterization and starch morphology in five varieties of Peruvian Andean maize[J]. Food Research International, 2021, 140: 110044. DOI:10.1016/j.foodres.2020.110044[72] BANURA S, THIRUMDAS R, KAUR A, et al. Modification of starch using low pressure radio frequency air plasma[J]. Lwt-Food Science and Technology, 2018, 89: 719-724. DOI:10.1016/j.lwt.2017.11.056 |
| [1] | XIE Yanxia, ZHU Yuanmin, YANG Zixi, XU Pan, SHI Chuan, YU Longjiang. Quality Analysis of Instant Pu-erh Tea Produced by Liquid-State Fermentation with Pantoea camelliae Z09 [J]. FOOD SCIENCE, 2025, 46(9): 225-234. |
| [2] | LIU Rong, WANG Dan, LI Yue, HUANG Yongchun. Effect of Re-steaming Treatment and Secondary Retrogradation on the Quality of Liuzhou Luosifen Rice Noodles [J]. FOOD SCIENCE, 2025, 46(9): 257-262. |
| [3] | DING Fengjiao, LIU Ziqiong, YAN Jiawei, RUAN Lingling, MA Jianping, LI Qinji, ZHANG Shuqing, LI Pengchun, PENG Anyuan, JIN Shan. Effect of Variable-Temperature Baking Technology on the Quality of ‘Beauty’ Oolong Tea [J]. FOOD SCIENCE, 2025, 46(9): 263-274. |
| [4] | ZHENG Yige, XING Shijun, SHI Wenjian, YUAN Yuyao, WU Bin, ZHANG Zheng. Sulfur Dioxide Fumigation Maintained the Postharvest Quality of ‘Munage’ Grape by Activating Sulfur Metabolism [J]. FOOD SCIENCE, 2025, 46(9): 285-294. |
| [5] | LI Haiyu, WEI Ziyu, CHEN Tong, HUANG Guangwei, HU Yongzhi, MENG Hecheng. Rapid Quality Discrimination of Rice during the Mildew Process Based on Multi-Source Information Fusion [J]. FOOD SCIENCE, 2025, 46(9): 314-321. |
| [6] | ZHU Miaomiao, LIU Yuan, NIU Jiayu, ZHANG Ruru, YU Miao, XIE Mengxi, XIE Liangliang, GUO Hongyan, ZHANG Tao, ZHENG Liyou. Research Progress on Superheated Steam Pretreatment in Oil Processing [J]. FOOD SCIENCE, 2025, 46(9): 337-339. |
| [7] | WANG Fei, ZHOU Weitong, Liang Liting, ZHANG Chengfeng, YANG Xiaohui, ZHANG Yi, HOU Leiping, SHI Yu. Effect of Combined Application of Calcium and Zinc on Fruit Quality of Tomato [J]. FOOD SCIENCE, 2025, 46(9): 11-19. |
| [8] | HUANG Haiyan, XUE Yong, MAO Xiangzhao, JIANG Hong, HU Yang. Effects of Different Concentrations of Chitosan Oligosaccharides on Improving the Fruit Quality and Anthocyanin Content of Blueberry: A Mechanistic Study [J]. FOOD SCIENCE, 2025, 46(9): 20-29. |
| [9] | YANG Junlin, YANG Shaojuan, WU Cheng, YIN Yanshun, YOU Xiaolong, ZHAO Wenyu, ZHU Anran, WANG Jia, HU Feng, HU Jianfeng, WANG Diqiang. Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage [J]. FOOD SCIENCE, 2025, 46(9): 48-62. |
| [10] | CAI Dongna, DU Shuang, JIANG Wenting, BU Shuai, YANG Ao, WANG Shaoyun, CHEN Xu, CAI Xixi. Chicken Skin Antifreeze Peptides: Ice Crystal Inhibition Activity and Quality Control of Chicken Mince during Freeze-Thaw Cycles [J]. FOOD SCIENCE, 2025, 46(9): 91-99. |
| [11] | JIN Long, HUANG Dewei, CHENG Huilin, LIU Yue, HU Yingying, ZHANG Lang, XU Baocai. Effect of Intermittent Deep Fat Frying Cycles on the Flavor and the Formation of Polycyclic Aromatic Hydrocarbons in Fried Chicken Drumsticks [J]. FOOD SCIENCE, 2025, 46(8): 267-273. |
| [12] | GUO Congcong, CUI Yue, GAO Shuang, SU Boya, MA Aijin, QI Guohui, TIAN Yiling. Effects of Different Pre-drying Temperatures on Quality Characteristics and Flavor Components of Kernels from Dried Walnuts with Green Husks [J]. FOOD SCIENCE, 2025, 46(8): 274-282. |
| [13] | WANG Baoyi, HU Xuefang, PEI Haisheng, ZHAI Xiaona, LIANG Liang, LI Yuanyuan. Quality Characteristics Improvement of Wheat Bran by Ultrafine Grinding Combined with Gradient Glutenin Addition [J]. FOOD SCIENCE, 2025, 46(8): 283-292. |
| [14] | ZHAO Xue, CONG Zhongxiao, SUN Huajun, ZANG Yanqing, LI Changsheng, ZHOU Xuan, QIAN Lili. Establishment and Application of a Quality Evaluation System for Commercial Flavored Extruded Noodles [J]. FOOD SCIENCE, 2025, 46(8): 25-33. |
| [15] | CAI Chenxiang, NIU Liying, FENG Jialin, LI Dajing, LIU Chunju, XIAO Yadong, XIAO Lixia. Effect of Maturity on the Quality of Preserved Strawberries [J]. FOOD SCIENCE, 2025, 46(8): 41-50. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||