食品科学 ›› 2022, Vol. 43 ›› Issue (14): 102-110.doi: 10.7506/spkx1002-6630-20210624-287

• 生物工程 • 上一篇    

基于TMT的定量蛋白质组学技术解析盐胁迫提高库德毕赤酵母耐热性机制

刘秋影,李春生,杨贤庆,王悦齐,吴燕燕,马海霞   

  1. (1.中国海洋大学食品科学与工程学院,山东 青岛 266003;2.中国水产科学研究院南海水产研究所,农业农村部水产品加工重点实验室,国家水产品加工技术研发中心,广东 广州 510300)
  • 发布日期:2022-07-28
  • 基金资助:
    国家自然科学基金青年科学基金项目(31801520);财政部和农业农村部:国家现代农业产业技术体系建设专项(CARS-47); 中国水产科学研究院基本科研业务费专项(2020TD73)

Tandem Mass Tag-based Quantitative Proteomics Revealed the Mechanism by Which Salt Stress Improves the Thermotolerance of Pichia kudriavzevii

LIU Qiuying, LI Chunsheng, YANG Xianqing, WANG Yueqi, WU Yanyan, MA Haixia   

  1. (1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; 2. Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China)
  • Published:2022-07-28

摘要: 利用串联质谱标签定量蛋白质组学技术,分析单独热胁迫组和热-盐共胁迫组之间的蛋白质组差异,筛选与耐热性提高相关的关键蛋白。结果发现,热休克蛋白12以及麦角固醇生物合成蛋白(ergosterol biosynthetic protein,ERG)28、ERG25等麦角固醇合成相关酶的表达在盐胁迫后显著增加,有利于维持热胁迫下细胞内蛋白质和细胞膜结构和功能的稳定。盐胁迫显著提高谷胱甘肽S-转移酶Y-2基因的表达,对抑制热诱导的脂质和蛋白质氧化损伤有重要作用。同时,盐胁迫显著提高热胁迫下碳水化合物代谢和能量代谢通路中多种酶(己糖激酶、甘油醛-3-磷酸脱氢酶、磷酸甘油酸变位酶1、磷酸甘油酸变位酶2、磷酸甘油酸激酶、乙醇脱氢酶、细胞色素c氧化酶亚基6A、V型质子ATP酶亚基c’)的表达,有利于细胞内ATP合成和酵母菌耐热性的提高。本研究结果为耐热酵母菌的基因工程改造以及其高温乙醇发酵能力的改善提供重要技术支撑。

关键词: 蛋白质组学;库德毕赤酵母;交叉保护;盐胁迫;耐热性

Abstract: The proteomic differences between Pichia kudriavzevii under heat stress and that under heat-salt stress were analyzed by tandem mass tag (TMT)-based quantitative proteomics to identify the key proteins related to improved thermotolerance. The expression of heat shock protein (HSP) 12 and the enzymes related to ergosterol biosynthesis, including ergosterol biosynthetic protein (ERG) 28 and ERG25 was significantly improved by salt stress, thereby contributing to the structural and functional stability of intracellular proteins and the cell membrane under heat stress. Salt stress significantly increased the expression of glutathione S-transferase (GST) Y-2, which played an important role in inhibiting heat-induced oxidative damage of lipids and proteins. Meanwhile, salt stress significantly increased the expression of enzymes related to carbohydrate metabolism and energy metabolism under heat stress, including hexokinase (HK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate mutase 1 (PGAM1), PGAM2, phosphoglycerate kinase (PGK), alcohol dehydrogenase (ADHP), cytochrome c oxidase subunit 6A (COX6A), and V-type proton ATPase subunit c’ (ATP6L), thus contributing to the synthesis of intracellular ATP and improvement of its thermotolerance. The results of this study can provide important technical support for the genetic engineering of thermotolerant yeasts and the improvement of their ethanol production at high temperature.

Key words: proteomics; Pichia kudriavzevii; cross-protection; salt stress; thermotolerance

中图分类号: