食品科学 ›› 2024, Vol. 45 ›› Issue (1): 254-260.doi: 10.7506/spkx1002-6630-20230323-230

• 安全检测 • 上一篇    

拉曼光谱结合化学计量学方法鉴别糖浆掺假蜂蜜

寇泽坤,陈国通,李思雨,杨中,欧阳玲秀,龚龑   

  1. (1.新疆维吾尔自治区分析测试研究院,新疆 乌鲁木齐 830011;2.新疆大学纺织与服装学院,新疆 乌鲁木齐 830017;3.新疆农业大学食品科学与药学学院,新疆 乌鲁木齐 830052;4.北京服装学院材料设计与工程学院,北京 100029)
  • 发布日期:2024-02-05
  • 基金资助:
    新疆维吾尔自治区科技支疆项目(2020E02122);新疆维吾尔自治区自然科学基金项目(2022D01A113); 新疆维吾尔自治区天山创新团队计划项目(202110498);国家自然科学基金地区科学基金项目(21964015)

Identification of Honey Adulterated with Syrup by Raman Spectroscopy and Chemometrics

KOU Zekun, CHEN Guotong, LI Siyu, YANG Zhong, OUYANG Lingxiu, GONG Yan   

  1. (1. Xinjiang Uygur Autonomous Region Institute for Analysis and Testing, ürümqi 830011, China; 2. School of Textile and Clothing, Xinjiang University, ürümqi 830017, China; 3. College of Food Science and Pharmacy, Xinjiang Agricultural University, ürümqi 830052, China; 4. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China)
  • Published:2024-02-05

摘要: 为区分掺加糖浆的假蜂蜜,确定其糖浆含量,提出一种以拉曼光谱技术结合化学计量学方法快速鉴别掺假蜂蜜的方法。利用拉曼光谱技术测定蜂蜜样本的光谱数据,利用主成分分析对光谱数据进行特征提取,选取累计贡献率达85%以上的主成分进行建模和预测。通过建立线性判别分析(linear discriminant analysis,LDA)和偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)模型,能够判别掺假蜂蜜中20%的糖浆含量差异。通过建立支持向量机(support vector machine,SVM)模型,能够判别掺假蜂蜜中5%的糖浆含量差异,且LDA、PLS-DA和SVM皆能以0.9以上的准确率区分1%糖浆含量的掺假蜂蜜样本和真蜂蜜样本。拉曼光谱技术结合化学计量学方法是一种快速无损、准确率高的掺假蜂蜜鉴别方法,其为蜂蜜及蜂蜜产品的快速鉴定提供了一种可行的思路,对维持蜂蜜市场秩序具有一定的意义。

关键词: 蜂蜜;糖浆掺假;拉曼光谱技术;主成分分析;线性判别分析;偏最小二乘判别分析;支持向量机

Abstract: In order to qualitatively and quantitatively identify syrup adulteration in honey, a method for rapid identification of adulterated honey by Raman spectroscopy and chemometrics was proposed. Raman spectroscopy was used to acquire spectral data of honey samples, and principal component analysis (PCA) was used to extract features from the spectral data. Principal components with a cumulative contribution rate of more than 85% were selected for modeling and prediction. By using linear discriminant analysis (LDA) and partial least squares-discriminant analysis (PLS-DA), models to identify honey adulterated with 20% syrup were established. A support vector machine (SVM) model to identify honey adulterated with 5% syrup, and all LDA, PLS-DA and SVM models could distinguish adulterated honey samples with 1% syrup content from pure honey with an accuracy of more than 0.9. Raman spectroscopy combined with chemometrics is a fast and non-destructive method for the identification of adulterated honey with high accuracy, which is significant to maintaining the order of the honey market.

Key words: honey; adulteration with syrup; Raman spectroscopy; principal component analysis; linear discriminant analysis; partial least squares-discriminant analysis; support vector machine

中图分类号: