食品科学 ›› 2023, Vol. 44 ›› Issue (21): 23-34.doi: 10.7506/spkx1002-6630-20230430-291

• 纳米递送系统专栏 • 上一篇    

体外消化对β-胡萝卜素大豆分离蛋白纳米颗粒黏液层渗透及跨膜转运的影响机制

陈羚, 吕园, 徐菲菲, 钟芳   

  1. (1. 江南大学食品学院,江苏 无锡 214122;2.江南大学未来食品科学中心,江苏 无锡 214122;3.江苏省食品安全与质量控制协同创新中心,江苏 无锡 214122;4.嘉兴未来食品研究院,浙江 嘉兴 314050)
  • 发布日期:2023-12-13
  • 基金资助:
    国家自然科学基金青年科学基金项目(32302282);国家自然科学基金面上项目(32072153); 江苏省自然科学基金青年科学基金项目(BK20210460);中国博士后科学基金面上项目(2021M700057)

Influence Mechanism of in Vitro Digestion Process on Mucus Layer Permeation and Transmembrane Transport of Soy Protein Isolate Nanoparticles Loaded with β-Carotene

CHEN Ling, LÜ Yuan, XU Feifei, ZHONG Fang,   

  1. (1. School of Food Science and Technonlogy, Jiangnan University, Wuxi 214122, China; 2. Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; 3. Jiangsu Collaborative Innovation Center for Food Safety and Quality Control, Wuxi 214122, China; 4. Jiaxing Institute of Future Food, Jiaxing 314050, China)
  • Published:2023-12-13

摘要: 纳米载体体内吸收过程复杂,受生物吸收屏障影响,纳米制剂在促进活性分子吸收利用度方面受到质疑。本实验采用大豆分离蛋白(soy protein isolate,SPI)制备包埋β-胡萝卜素的植物基纳米颗粒(β-carotene loaded soy protein isolate nanoparticles,BC-SPIs),并通过体外模拟消化模型研究BC-SPIs在消化过程中的结构特性变化。同时,通过Caco2细胞转运模型考察消化条件对消化后BC-SPIs跨膜转运的影响机制。此外,利用含黏液层的Caco2-HT29共培养模型考察消化前后BC-SPIs的黏液层渗透性。研究发现,在消化前,BC-SPIs可以直接通过网格蛋白和小窝蛋白依赖的内吞作用被Caco2单层细胞吸收;而在经过体外模拟消化后,BC-SPIs粒径增大,可以通过网格蛋白依赖的内吞作用、小窝蛋白依赖的内吞作用以及巨胞饮3 种内吞形式被细胞直接吸收。消化后的BC-SPIs带有更高的负电荷,跨越黏液层屏障的能力提高了0.48 倍,同时β-胡萝卜素的跨膜转运量提高了0.56 倍。本研究明确了BC-SPIs在消化前和消化后的不同吸收途径,揭示了BC-SPIs在模拟消化条件下与胆盐互作及尺寸增大对其细胞转运吸收效率的促进作用。这些发现可为进一步提高纳米载体在生物利用度方面的应用潜力提供理论参考,有助于推动纳米技术在药物、保健品等领域的发展。

关键词: 纳米载体;大豆分离蛋白;跨膜转运;黏液层渗透;细胞吸收

Abstract: The in vivo absorption of nanocarriers is a complex process, which is affected by the bioabsorption barrier. It is doubtful whether nanopreparations can promote the absorption and utilization of bioactive molecules. In this study, soy protein isolate (SPI) was used to prepare plant-based nanocarriers encapsulating β-carotene, and an in vitro digestion model was employed to investigate the structural changes of β-carotene loaded soy protein isolate nanoparticles (BC-SPIs) during digestion. Additionally, the Caco2 cell transport model was used to explore the impact mechanism of digestion conditions on the transmembrane transport of BC-SPIs after digestion. Furthermore, a Caco2-HT29 co-culture model containing a mucus layer was used to investigate the permeability of BC-SPIs through the mucus layer before and after digestion. This study found that before digestion, BC-SPIs could be directly absorbed by the Caco-2 cell monolayer through clathrin- and caveolin-dependent endocytosis. After in vitro simulated digestion, the size of BC-SPIs increased, and they could be directly absorbed by cells through clathrin-dependent endocytosis, caveolin-dependent endocytosis and macropinocytosis. The digested nanoparticles carried more negative charge, resulting in a 1.48-fold enhancement in the ability to cross the mucus layer and a 1.56-fold increase in the transmembrane transport efficiency of β-carotene. This study clarified the different absorption pathways of BC-SPIs before and after digestion and revealed the interaction between BC-SPIs and bile salts under simulated digestion conditions and the contribution of increasing the size of BC-SPIs to their transport and absorption efficiency by cells. These findings lay a theoretical foundation for further improving the application potential of nanocarriers in bioavailability enhancement, which will help advance the development of nanotechnology in several fields such as pharmaceuticals and health products.

Key words: nanocarriers; soy protein isolate; transmembrane transport; mucus layer permeation; cellular uptake

中图分类号: