食品科学 ›› 2025, Vol. 46 ›› Issue (23): 367-375.doi: 10.7506/spkx1002-6630-20241219-168

• 专题论述 • 上一篇    

基于主题模型与情感特征增强的食品安全网络舆情演化分析方法

韩坤,刘忠轶   

  1. (中国人民公安大学公安管理学院,北京 100038)
  • 发布日期:2025-12-26
  • 基金资助:
    国家社科基金项目(25BZZ008)

A Method for Analyzing the Evolution of Online Public Opinion on Food Safety Based on Topic Modeling and Sentiment Feature Enhancement

HAN Kun, LIU Zhongyi   

  1. (School of Public Security Management, People’s Public Security University of China, Beijing 100038, China)
  • Published:2025-12-26

摘要: 食品安全问题一直是社会关注的焦点,由此引发的网络舆情风险对社会安全稳定造成了负面影响。本文构建了一个融合主题模型与情感特征增强的食品安全网络舆情演化分析框架。该框架通过结合生命周期理论与微博评论数据的时序特征进行周期划分,并运用隐含狄利克雷分布(latent Dirichlet allocation,LDA)模型解析各阶段舆情主题。通过构建基于大模型情感特征增强的双向编码器表示(bidirectional encoder representations from transformers,BERT)-双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)-广义线性模型(generalized linear model,GLM)模型识别舆情情感倾向,探究不同周期内网络舆情的主题差异及情感演化规律,进而优化网络舆情应对策略。为验证该框架的有效性,本文基于“油罐车混拉食用油”事件的自建数据集和ChnSentiCorp公开数据集进行实证分析。结果表明,BERT-BiLSTM-GLM模型F1值分别达到98.36%和97.63%,在情感演化分析上具有优越性。在此基础上,结合LDA模型对食品安全网络舆情的主题演化进行分析,为政府相关部门有效引导网络舆情提供决策支持和理论支撑。

关键词: 食品安全;网络舆情;舆情演化;深度学习;情感分析

Abstract: Food safety has always been a focal point of societal concern, and the online public opinion risks triggered by this issue have a negative impact on social security and stability. This paper constructs an analytical framework for the evolution of online public opinion on food safety that integrates topic modeling with sentiment feature enhancement. The framework, based on the life cycle theory, combines the temporal characteristics of microblog comment data for periodization. It applies the latent Dirichlet allocation (LDA) model to analyze public opinion topics in different stages. Additionally, the bidirectional encoder representations from transformers-bidirectional long short-term memory-generalized linear model (BERT-BiLSTM-GLM) is used to identify sentiment tendencies, providing an in-depth exploration of the thematic difference and sentiment evolution patterns of online public opinion across various periods, thereby optimizing public opinion response strategies. To validate the effectiveness of the framework, empirical analyses are conducted based on the dataset constructed by ourselves for the “mixed use of tankers for edible and chemical oil” scandal and the ChnSentiCorp dataset. The results show that the F1 scores of the BERT-BiLSTM-GLM model are 98.36% and 97.63% for the two datasets, respectively, demonstrating its superiority in sentiment evolution analysis. Based on this, the LDA model is used for comprehensive analysis of the thematic evolution of online public opinion on food safety, providing strong decision support and a theoretical foundation for relevant government departments to effectively guide online public opinion.

Key words: food safety; online public opinion; evolution of public opinion; deep learning; sentiment analysis

中图分类号: