食品科学 ›› 2025, Vol. 46 ›› Issue (24): 293-303.doi: 10.7506/spkx1002-6630-20250702-023

• 安全检测 • 上一篇    

软枣猕猴桃早期瘀伤的光谱与格拉姆角场图像检测

吴沛净,姜凤利,李美璇,孙炳新,田有文   

  1. (1.沈阳农业大学信息与电气工程学院,辽宁 沈阳 110866;2.沈阳农业大学食品学院,辽宁 沈阳 110866)
  • 发布日期:2025-12-26
  • 基金资助:
    辽宁省科技厅自然科学基金面上项目(2024-MSLH-411)

Detection of Early Bruises in Actinidia arguta Using Spectroscopy and Gramian Angular Field Imaging

WU Peijing, JIANG Fengli, LI Meixuan, SUN Bingxin, TIAN Youwen   

  1. (1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China; 2. Food Science College, Shenyang Agricultural University, Shenyang 110866, China)
  • Published:2025-12-26

摘要: 为实现软枣猕猴桃早期瘀伤的快速无损识别,本研究提出基于光谱与格拉姆角场(Gramian angular field,GAF)图像的并行建模策略。采集了软枣猕猴桃在瘀伤早期不同时间下的高光谱数据,并采用自适应小波变换对原始光谱进行去噪处理。基于处理后的一维光谱数据,构建了支持向量机、一维卷积神经网络、长短期记忆网络与Stacking集成学习4 种软枣猕猴桃瘀伤时间分类模型。同时,引入GAF方法将光谱转换为二维图像,结合YOLOv8n模型进行瘀伤时间分类识别。结果表明,各模型在分类性能与计算效率方面存在差异。其中,Stacking模型融合多种基学习器的优势,表现出最优的分类性能,准确率、召回率、精确率与F1分数均达到97.78%以上,运行时间为49 s。YOLOv8n模型在准确率、召回率、精确率以及F1分数上与Stacking模型表现相近,虽计算成本较高(运行时间为25 min 22 s),但其凭借端到端的图像建模能力以及优秀的特征可视化功能,显著提升了模型可解释性。本研究提出的双路径建模策略,不仅可为软枣猕猴桃早期瘀伤的快速、精准识别提供新思路,也可为采后果实智能分级与自动分拣系统的构建提供理论依据和技术支持。

关键词: 软枣猕猴桃;瘀伤;高光谱成像;格拉姆角场法;深度学习

Abstract: To achieve rapid and non-destructive identification of early bruises in Actinidia arguta, this study proposed a parallel modeling strategy based on spectra and Gramian angular field (GAF) images. Hyperspectral data were collected at different times during the early stage of bruising, and the raw spectra were denoised using adaptive wavelet transform (AWT). Based on the denoised one-dimensional spectral data, four classification models were developed to classify the occurrence time of bruising in A. arguta fruits: support vector machine (SVM), one-dimensional convolutional neural network (1D-CNN), long short-term memory network (LSTM), and stacking ensemble learning. Meanwhile, the study innovatively introduced the GAF method to transform the spectra into two-dimensional images, which were used in combination with the YOLOv8n model for the classification of bruising time. The results demonstrated that the models differed in classification performance and computational efficiency. Among them, the stacking model, which leverages the complementary strengths of multiple base learners, achieved the best classification performance, with accuracy, recall, precision and F1-score all reaching over 97.78%, and a running time of 49 seconds. The YOLOv8n model exhibited comparable accuracy, recall, precision, and F1-score to the stacking model, and although it incurred a higher computational cost (running time of 25 min and 22 s), its end-to-end image modeling capability and superior feature visualization significantly enhanced the interpretability of the model. The dual-path modeling strategy proposed in this study provides a new approach for the rapid and accurate detection of early bruises in A. arguta fruits, offering theoretical support and guidance for the development of intelligent postharvest grading and automated sorting systems.

Key words: Actinidia arguta; bruise; hyperspectral imaging; Gramian angular field; deep learning

中图分类号: