食品科学 ›› 2025, Vol. 46 ›› Issue (24): 304-312.doi: 10.7506/spkx1002-6630-20250707-051

• 安全检测 • 上一篇    

基于微型近红外光谱的红茶萎凋水分无损检测方法

李昊洵,于晓,董春旺,陈之威,郭梦奇,彭伟杰   

  1. (1.天津理工大学电气工程与自动化学院,天津 300382;2.山东省农业科学院茶叶研究所,山东 济南 250100)
  • 发布日期:2025-12-26
  • 基金资助:
    山东省农业科学院创新工程项目(CXGC2024A08;CXGC2025A02);济南市农业科技攻关项目(GG202415); 浙江省“尖兵”“领雁”研发攻关计划项目(2023C02043);山东省现代农业产业技术体系项目(SDAIT19)

Non-destructive Detection of the Moisture Content of Withered Leaves for Black Tea Based on Micro-Near Infrared Spectroscopy

LI Haoxun, YU Xiao, DONG Chunwang, CHEN Zhiwei, GUO Mengqi, PENG Weijie   

  1. (1. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300382, China;2. Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China)
  • Published:2025-12-26

摘要: 本研究提出一种基于微型近红外光谱信息的萎凋叶水分检测方法。首先采用自主研发的近红外光谱仪测量萎凋叶样品漫反射光谱数据,采用水分测量仪测量各时间点萎凋叶含水量;采用预处理、变量筛选方法和主成分分析对光谱数据进行优化、降维处理,建立沂蒙红茶萎凋程度判别模型和萎凋叶水分预测模型。结果表明,随机森林判别模型在测试集上取得了99.4%的准确率,展现出了较好的分类性能;自助软收缩法-支持向量回归预测模型性能评价指标分别为校准相关系数(rc)0.994、预测相关系数(rp)0.984、校准均方根误差0.730、预测均方根误差1.198、相对分析误差4.485,证明模型具有良好的预测性能。本研究可为沂蒙红茶标准化、数字化生产提供理论方法与数据支撑。

关键词: 近红外光谱;沂蒙红茶;水分检测;模型优化

Abstract: In this study, a method for detecting the moisture content of withered leaves for black tea was proposed based on micro-near infrared spectroscopy (NIR). An NIR spectrometer developed in our lab was used to collect diffuse reflectance spectra of the withered leaf samples, whose moisture content was measured using a moisture meter at various time points. Pretreatment methods, variable screening methods and principal component analysis (PCA) were adopted to perform optimization and dimensionality reduction of spectral data to establish a discriminant model for the withering degree and a prediction model for the moisture content of withered leaves for Yimeng black tea. The results showed that the random forest (RF) discriminant model achieved an accuracy rate of 99.4% on the test set, exhibiting extraordinary classification performance. The model developed using bootstrapping soft shrinkage combined with support vector regression (BOSS-SVR) exhibited good prediction performance with correlation coefficient of calibration (rc) of 0.994, correlation coefficient of prediction (rp) of 0.984, root mean square error of calibration (RMSEC) of 0.730, root mean square error of prediction (RMSEP) of 1.198, and relative percent deviation (RPD) of 4.485. This research provides a theoretical basis and data support for the standardized and digital production of Yimeng black tea.

Key words: near-infrared spectroscopy; Yimeng black tea; moisture detection; model optimization

中图分类号: