食品科学 ›› 2025, Vol. 46 ›› Issue (22): 227-235.doi: 10.7506/spkx1002-6630-20250515-090

• 生物工程 • 上一篇    下一篇

基于发酵温度胁迫调控重组菌群的代谢特征及风味表达机制

王念,龚佳欣,唐杰,朱楚天,杨勇,葛向阳,黄永光   

  1. (1.贵州大学酿酒与食品工程学院,贵州?贵阳 550025;2.贵州大学资源与环境工程学院,贵州?贵阳 550025;3.江苏洋河酒厂股份有限公司,江苏?宿迁 223800;4.贵州省酱香白酒技术创新中心,贵州?贵阳 550025;5.国家市场监督管理总局重点实验室(酱香型白酒品质与安全),贵州?贵阳 550025)
  • 发布日期:2025-11-21
  • 基金资助:
    国家自然科学基金地区科学基金项目(32060571);国家自然科学基金面上项目(32472319); 江苏洋河股份有限公司横向合作项目(YHJSZXJSKF202202)

Regulatory Effect of Temperature Stress on Metabolic Characteristics and Flavor Expression Mechanism of Recombinant Microbial Communities

WANG Nian, GONG Jiaxin, TANG Jie, ZHU Chutian, YANG Yong, GE Xiangyang, HUANG Yongguang   

  1. (1. School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; 2. College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; 3. Jiangsu Yanghe Brewery Joint-Stock Co., Ltd., Suqian 223800, China; 4. Guizhou Sauce-Flavor Baijiu Technological Innovation Center, Guiyang 550025, China; 5. National Key Laboratory of Sauce-Flavor Baijiu Quality and Safety, State Administration for Market Regulation, Guiyang 550025, China)
  • Published:2025-11-21

摘要: 本实验基于高温大曲核心内源功能菌株构建合成菌群进行固态模拟发酵,应用顶空固相微萃取与气相色谱-质谱联用技术解析温度胁迫对合成菌群挥发性化合物代谢的影响,结合宏转录组学揭示温度胁迫下合成菌群代谢通路关键基因的温度响应机制,阐释合成菌群中编码风味成分的关键基因对温度变化的动态调控规律。结果显示,发酵温度对合成菌群的吡嗪类、酚类、醇类等化合物具有显著调控作用。在高温胁迫下,合成菌群通过“保核心功能,弃冗余消耗”的策略重新分配代谢资源。在40 ℃发酵条件下,合成菌群基因组的协同作用更为显著,其核心功能基因表达谱呈现显著转变,具有较强风味化合物代谢能力,gudB、sucC等基因表达水平显著上调。在50 ℃高温胁迫下,合成菌群启动热应激响应机制,促使合成菌群功能重定向,pgm、tpiA等基因表达水平急剧上调。在调控挥发性化合物差异的代谢通路中,风味物质的生物合成与氨基酸代谢通路存在显著关联性,尤以支链氨基酸及芳香族氨基酸代谢途径最为突出。本研究可为优化控温制曲工艺、提升固态发酵可控性及人工菌剂开发提供理论支撑。

关键词: 合成菌群;宏转录组学;风味化合物;温度胁迫;代谢机制

Abstract: Based on the core endogenous functional strains of high-temperature Daqu, a synthetic microbial community was constructed for solid-state fermentation. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was employed to analyze the impact of temperature stress on the metabolism of volatile compounds in the synthetic microbial community. Metatranscriptomics was employed to study the temperature response mechanisms of key metabolic genes in the microbial community under thermal stress and to elucidate the dynamic regulation patterns of flavor-related genes in response to temperature variations. The findings demonstrated that fermentation temperature significantly regulated pyrazines, phenols, alcohols, and other compounds in the synthetic community. Under high-temperature stress, the microbial community redistributed metabolic resources through preserving core functions while eliminating redundant consumption. During fermentation at 40 ℃, the synergistic interactions of genomes in the synthetic community were more pronounced, and the expression profiles of the core functional genes were significantly shifted. In addition, the metabolic capacity for flavor compounds was enhanced and the expressions of the gudB and sucC genes were notably upregulated. Under thermal stress at 50 ℃, the community activated heat-shock response mechanisms, thereby triggering its functional redirection and dramatic upregulation of the pgm and tpiA genes. Among the metabolic pathways regulating differential volatile compounds, the biosynthesis of flavor substances exhibited a significant correlation with amino acid metabolism pathways, particularly the branched-chain amino acid and aromatic amino acid metabolism pathways. This study provides theoretical support for optimizing the temperature-controlled Qu-making process, enhancing the controllability of solid-state fermentation, and developing artificial microbial agents.

Key words: synthetic microbial communities; metatranscriptomics; flavor compounds; temperature stress; metabolic mechanisms

中图分类号: