食品科学 ›› 2025, Vol. 46 ›› Issue (23): 333-346.doi: 10.7506/spkx1002-6630-20250526-171

• 专题论述 • 上一篇    

结合机器学习算法的食品风味分析策略

张超,堵劲松,刘伟,游慧玲,叶秋明,范运涛,尚小利,姚小龙,朱丹晔,乔学义   

  1. (1.中国烟草总公司郑州烟草研究院,河南 郑州 450001;2.河北中烟工业有限责任公司,河北 石家庄 050051;3.红塔辽宁烟草有限责任公司,辽宁 沈阳 110001;4.咸阳烟叶复烤有限责任公司,陕西 西安 712042)
  • 发布日期:2025-12-26
  • 基金资助:
    国家自然科学基金青年科学基金项目(32402289);中国烟草总公司重点科技项目(110202103002); 河北中烟工业有限责任公司科技项目(HBZY2025A015);中国烟草实业发展中心青年人才科技项目(ZYSYQ-2024-04)

A Review of Strategies for Food Flavor Analysis Incorporating Machine Learning Algorithms

ZHANG Chao, DU Jinsong, LIU Wei, YOU Huiling, YE Qiuming, FAN Yuntao, SHANG Xiaoli, YAO Xiaolong, ZHU Danye, QIAO Xueyi   

  1. (1. Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China; 2. China Tobacco Hebei Industrial Co. Ltd., Shijiazhuang 050051, China; 3. Hongta Liaoning Tobacco Co. Ltd., Shenyang 110001, China; 4. Xianyang Tobacco Redrying Co. Ltd., Xi’an 712042, China)
  • Published:2025-12-26

摘要: 食品风味是影响消费者选择和满意度的关键因素。传统食品风味分析方法存在效率低、主观性强等局限性,而机器学习技术凭借其强大的数据处理和模式识别能力,为食品风味研究提供了新的解决方案。本文综述食品风味研究中使用的机器学习算法以及结合机器学习进行的食品风味分析策略,明确常用的分析仪器并从分子结构、分子性质、分子序列的不同属性层面出发进行风味方法研究,以现有风味数据库作为方法补充,最终形成一条可靠、全面的风味分析线路,也对机器学习和方法的不足之处提出改进措施,为食品风味分析策略提供方向参考,有利于推动未来食品行业的转型升级。

关键词: 食品风味分析策略;机器学习;分子结构;分子性质;分子序列;深度学习;风味分子

Abstract: Food flavor is a key factor influencing consumer choice and satisfaction. Traditional methods for food flavor analysis suffer from limitations such as low efficiency and strong subjectivity. In contrast, machine learning technology, with its powerful data processing and pattern recognition capabilities, offers new solutions for food flavor research. This paper reviews machine learning algorithms employed in food flavor research and flavor analysis strategies incorporating machine learning. It outlines commonly used analytical instruments and explores flavor analysis methodologies at three distinct levels: molecular structure, properties, and sequence. Ultimately, a reliable and comprehensive flavor analysis pathway has been established using existing flavor databases as methodological supplements. The paper also proposes improvements to address the shortcomings of machine learning methodologies, providing directional references for food flavor analysis strategies. This contributes to advancing the transformation and upgrading of the food industry.

Key words: food flavor analysis strategies; machine learning; molecular structure; molecular properties; molecular sequence; deep learning; flavor molecules

中图分类号: