食品科学 ›› 2025, Vol. 46 ›› Issue (24): 18-28.doi: 10.7506/spkx1002-6630-20250717-144

• 食品安全快速检测专栏 • 上一篇    

集成机器学习的纳米酶传感技术在食品质量与安全检测研究进展

潘明飞,李慧琳,胡晓春,王浩,郜萌萌,任科颖,李诗洁,王硕   

  1. (1.天津科技大学食品科学与工程学院,省部共建食品营养与安全国家重点实验室,天津 300457;2.南开大学医学院,天津市食品科学与健康重点实验室,天津 300457;3.江苏科技大学粮食学院,江苏 镇江 212000)
  • 发布日期:2025-12-26
  • 基金资助:
    国家自然科学基金面上项目(32272416;32572695);大学生创新创业训练计划项目(202510057026)

Research Progress on Nanozyme-Based Sensing Technologies Integrated with Machine Learning in Food Quality and Safety Detection

PAN Mingfei, LI Huilin, HU Xiaochun, WANG Hao, GAO Mengmeng, REN Keying, LI Shijie, WANG Shuo   

  1. (1. State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;2. Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300457, China;3. School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212000, China)
  • Published:2025-12-26

摘要: 高效且灵敏的检测技术是实现食品质量与安全精准监控的关键保障。纳米酶因其优异的催化活性,能够显著增强检测信号,从而有效提升分析方法的灵敏度与准确性。然而,食品基质的复杂性及光谱图像数据的多维特征会降低检测结果的准确性和灵敏度。机器学习算法具备强大的数据处理与分析能力,能够深入挖掘和解析复杂的检测数据,进而显著提升检测方法的准确性、灵敏度及检测效率。本文系统综述了集成机器学习的纳米酶传感技术在食品质量与安全检测中的应用进展,重点探讨了该技术在食品有害物检测、品质及真实性监测中的技术优势。机器学习与纳米酶传感技术的融合不仅显著提升了检测的精准性与效率,也为食品质量与安全检测领域向智能化和高通量方向发展提供了坚实的技术支撑。

关键词: 机器学习;纳米酶传感;食品质量监测;食品安全检测

Abstract: Efficient and sensitive detection technologies are crucial for the precise monitoring of food quality and safety. Nanozymes, owing to their superior catalytic activity, can significantly enhance detection signals, thereby effectively improving the sensitivity and accuracy of analytical methods. However, the complexity of food matrices and the multi-dimensional nature of spectral data may compromise the reliability of detection results. Machine learning algorithms possess robust data processing and analysis capabilities, enabling in-depth mining and interpretation of complex detection data, thus effectively improving the accuracy, sensitivity, and efficiency of analytical techniques. This article presents a comprehensive review of the applications of nanozyme-based sensing technologies integrated with machine learning in the field of food quality and safety detection. It particularly highlights the technical advantages of this integration in the detection of food hazards, quality, and authenticity. The combination of machine learning with nanozyme-based sensing technologies not only enhances the detection precision and efficiency but also provides solid technical support for advancing food safety detection toward intelligent and high-throughput systems.

Key words: machine learning; nanozyme-based sensing; food quality monitoring; food safety detection

中图分类号: