食品科学 ›› 2020, Vol. 41 ›› Issue (17): 45-52.doi: 10.7506/spkx1002-6630-20190808-087

• 基础研究 • 上一篇    下一篇

魔芋葡甘露低聚糖的热稳定特性以及与低聚果糖益生元的对比分析

叶枫,汤宏赤,张剑堡,和竹新,和正鹏,范锐鸿,林丽华,郭媛,刘江丽,庞浩   

  1. (1.广西大学生命科学与技术学院,广西 南宁 530004;2.广西科学院 国家非粮生物质能源工程技术研究中心,非粮生物质酶解国家重点实验室,广西生物炼制重点实验室,广西 南宁 530007;3.丽江大然生物有限公司,云南 丽江 674100)
  • 出版日期:2020-09-15 发布日期:2020-09-16
  • 基金资助:
    广西重大科技创新基地建设项目(2018-15-Z03-1206)

Comparative Analysis of the Thermal Stability of Konjac Glucomannan Oligosaccharides and Prebiotic Fructooligosaccharides

YE Feng, TANG Hongchi, ZHANG Jianbao, HE Zhuxin, HE Zhengpeng, FAN Ruihong, LIN Lihua, GUO Yuan, LIU Jiangli, PANG Hao   

  1. (1. College of Life Science and Technology, Guangxi University, Nanning 530004, China;2. National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, China; 3. Lijiang Daran Biological Co. Ltd., Lijiang 674100, China)
  • Online:2020-09-15 Published:2020-09-16

摘要: 为研究葡甘露低聚糖和低聚果糖热稳定特性,用热重分析仪在不同升温速率下测试两种低聚糖的热稳定性,采用Kissinger法、Kissinger-Akahira-Sunose法和Flynn-Wall-Ozawa法计算得到低聚糖的活化能(E)、指前因子(ln A)、热力学参数以及进行机理函数的判定。结果表明,两种低聚糖的热解过程分为3 个阶段,非等温升温速率下的分解峰温在220~300 ℃。第一阶段是低聚糖干燥脱水的过程;第二阶段低聚果糖的E和ln A均大于葡甘露低聚糖,前者受热解聚生成果二糖和果三糖,迅速结晶化导致E偏高,葡甘露低聚糖机理函数遵循三维扩散和球形对称的Jander方程;第三阶段,葡甘露低聚糖的E和ln A更高,结果表明其热稳定性高于低聚果糖,二者机理函数均遵循随机成核和随后生长的Avrami-Erofeev方程,最后确定低聚糖热解过程热力学参数,即ΔG、ΔH和ΔS。本实验研究葡甘露低聚糖和低聚果糖的热稳定特性,为其应用于食品和医药领域的加工工艺设计提供依据。

关键词: 葡甘露低聚糖;低聚果糖;低聚糖;益生元;热力学分析

Abstract: The thermal stability characteristics of konjac glucomannan oligosaccharides and fructooligosaccharides was tested with a thermogravimetric analyzer under different heating rates. The activation energy (E), pre-exponential factors (ln A), thermodynamic parameters and mechanism functions of the two oligosaccharides were calculated by Kissinger method, Kissinger-Akahira-Sunose (KAS) method and Flynn-Wall-Ozawa (FWO) method and the mechanism equations were determined. The results showed that the pyrolysis process of both oligosaccharides was divided into 3 stages, and the peak temperature of decomposition was 220–300 ℃ under the non-isothermal heating rate. The first stage is the process of oligosaccharides drying and dehydration. At the second stage, the E and ln A of fructooligosaccharides were greater than those of glucomannan oligosaccharides, showing that the former was depolymerized by heat to produce fructodisaccharide and fructotrisaccharide, which can rapidly crystallize leading to a high E. The mechanism function of glucomannan oligosaccharides followed the three-dimensional spherically symmetric diffusion Jander equation. At the third stage, the E and ln A of glucomannan oligosaccharides were higher, showing that the thermal stability was higher than that of fructooligosaccharides. The mechanism functions of both oligosaccharides followed the random nucleation and subsequent growth of Avrami-Erofeev equation. Finally, the thermodynamic parameters of the oligosaccharide pyrolysis process, namely ΔG, ΔH and ΔS, were determined. The obtained thermal stability of glucomannan oligosaccharides and fructooligosaccharides provides a basis for the design of processing technology for foods and medicine.

Key words: glucomannan oligosaccharides; fructooligosaccharides; oligosaccharides; prebiotics; thermomechanical analysis

中图分类号: