食品科学 ›› 0, Vol. ›› Issue (): 0-0.

• 成分分析 •    下一篇

基于ATD-GC-MS技术检测铁观音做青过程环境挥发性成分的动态变化

毕婉君1,魏子淳2,郑玉成1,邓慧莉1,倪子鑫1,林宏政2,郝志龙1,孙云3   

  1. 1. 福建农林大学园艺学院
    2. 福建农林大学
    3. 福建农林大学园艺学院茶学系
  • 收稿日期:2022-05-12 修回日期:2022-12-22 出版日期:2023-04-25 发布日期:2023-04-26
  • 通讯作者: 孙云 E-mail:sunyun1125@126.com
  • 基金资助:
    财政部和农业农村部:国家现代农业产业技术体系资助;福建农林大学科技创新专项;福建农林大学茶产业链科技创新与服务体系建设项目;福建张天福茶叶发展基金会科技创新基金

Detection of Dynamic Changes of Environmental Volatile Components in Tieguanyin Oolong Tea During Green-making Process Based on ATD-GC-MS

Wan-Jun BI1,Zichun Wei2, 1, 1, 1, Zhi-Long HAO   

  • Received:2022-05-12 Revised:2022-12-22 Online:2023-04-25 Published:2023-04-26

摘要: 环境中的挥发性成分是判断乌龙茶做青关键工艺节点的重要指标之一,筛选可以区分摇青和晾青工艺的特征挥发性成分并寻找其变化规律,可为建立乌龙茶智能化做青香气指标提供一定的理论基础和科学依据。本研究采用全自动热脱-气相色谱-质谱法(Automatic Thermal Desorption-Gas Chromatography-Mass Spectrometric,ATD-GC-MS)捕集和检测铁观音做青关键工艺节点的环境挥发性成分,应用短时间序列表达挖掘器(Short Time-series Expression Miner,STEM)和偏最小二乘法判别分析(Partial Least Squares Discrimination Analysis,PLS-DA)对铁观音做青过程中挥发性成分进行分析。结果显示,铁观音做青环境中共鉴定出122种挥发性成分,包括醇类、酯类、烯烃类、烷烃类、醛类、芳香烃类、酮类和其他化合物8大类,其中酯类是做青环境中的主要挥发物;STEM结果表明,检测出的挥发性成分可划分成19种变化趋势,且在2种趋势模型中有显著性富集,其中仲丁醇、乙酸乙酯、异戊醛、异戊醇、正己醇、2-庚醇、己酸甲酯、甲基庚烯酮、异丁酸辛酯等挥发性成分带有特殊香气并随着做青次数的增加而显著增加;PLS-DA结果表明,摇青和晾青两部分可有效区分开,并鉴定出7种共同特征挥发性成分(VIP>1):(Z)-乙酸-4-己烯-1-酯、反-3-己烯基丁酯、叶醇、2-己烯醛、异戊腈、(3E)-4,8-二甲基壬-1,3,7-三烯、罗勒烯异构体混合物。由此可见,铁观音做青过程中环境挥发性成分类别的比例和所含物质都会随着做青过程的推进有所变化,大部分挥发性成分呈现较为明显的规律性变化,其中筛选得到的7种特征挥发性成分呈现有规律的倍数变化,可作为判断智能化做青的香气指标。

关键词: 铁观音(Camellia sinensis cv. Tieguanyin), 做青, 环境挥发性成分, 全自动热脱-气相色谱-质谱法(ATD-GC-MS), 短时间序列表达挖掘器(STEM), 偏最小二乘法判别分析(PLS-DA)

Abstract: The volatile components in the environment are one of the important indexes to judge the key process nodes of Oolong tea. Screening the characteristic volatile components that can distinguish distinguish between bruising and withering processes and find their change law.It is expected to provide a certain theoretical basis and scientific basis for establishing the aroma index of Oolong tea. Automatic thermal desorption-gas chromatography-mass spectrometric (ATD-GC-MS) was used to capture and detect the environmental volatile components of Tieguanyin's key process nodes. Short time series expression miner (STEM) and partial least squares discrimination analysis (PLS-DA) was used to analyze the volatile components in the green-making process of Tieguanyin. The results showed that a total of 122 volatile components were identified in Tieguanyin's green-making environment, including 8 categories of alcohols, esters, olefins, alkanes, aldehydes, aromatic hydrocarbons, ketones and other compounds. Among them, esters are the main volatile compounds in the green-making environment. Stem results show that the detected volatile components can be divided into 19 trends, and there are significant enrichment in the two trend models. Among them, 2-Butanol, Ethyl acetate, Isovaleraldehyde, 3-Methyl-1-butanol, 1-Hexanol, 2-Heptanol, Methyl hexanoate, 6-Methyl-5-hepten-2-one, Octyl isobutyrate have special aroma, which increases significantly with the increase of green-making times. PLS-DA results showed that the two parts of bruising and withering could be effectively distinguished, and seven common characteristic volatile components(VIP>1) were identified:(Z)-4-hexen-1-yl acetate, (E)-Butanoic acid, 3-hexenyl ester, (E)-3-Hexen-1-ol, 2-Hexenal, 3-methyl-Butanenitrile, (E)-4,8-Dimethylnona-1,3,7-triene and (Z)-3,7-dimethyl-1,3,6-Octatriene. The proportion of environmental volatile components and the substances contained in Tieguanyin's green-making process will change with the promotion of the green-making process. Most of the volatile components show obvious regular changes. Among them, the seven characteristic volatile components screened show regular multiple changes, which can be considered as the aroma index for judging intelligent green-making.

Key words: Tieguanyin(Camellia sinensis cv. Tieguanyin), Green-making, environmental volatile components, automatic thermal desorption gas chromatography-mass spectrometry (ATD-GC-MS), short time-series expression miner(STEM), partial least squares discrimination analysis(PLS-DA)

中图分类号: