食品科学 ›› 2022, Vol. 43 ›› Issue (11): 197-203.doi: 10.7506/spkx1002-6630-20210610-143

• 专题论述 • 上一篇    下一篇

味觉感知的人体肠-脑轴信号传导机制研究进展

赵孟斌,张琦梦,宋明月,刘果,曹庸,高向阳   

  1. (1.华南农业大学食品学院,广东省功能食品活性物重点实验室,广东 广州 510642;2.岭南现代农业科学与技术广东省实验室,广东 广州 510642)
  • 出版日期:2022-06-15 发布日期:2022-06-30
  • 基金资助:
    国家自然科学基金面上项目(31771939)

Progress in Research on the Mechanism of Human Gut-Brain Axis Signal Transduction in Taste Perception

ZHAO Mengbin, ZHANG Qimeng, SONG Mingyue, LIU Guo, CAO Yong, GAO Xiangyang   

  1. (1. Functional Food Active Substance Key Laboratory of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China; 2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China)
  • Online:2022-06-15 Published:2022-06-30

摘要: 味觉是人类感知生物摄取能的重要环节,胃肠道亦存在味觉感知现象。本文从胃肠道味觉受体、胃肠道味觉感知通路及肠-脑轴味觉信号传导机制等方面进行了分析,胃肠道中味觉感知表明胃肠道中存在味觉受体第一家族亚型(taste receptor type 1 member,T1R)1、T1R2、T1R3、味觉受体第二家族亚型(taste receptors type 2,T2Rs)等味觉受体,且肠道味觉物质刺激肠内分泌细胞分泌胆囊收缩素(cholecystokinin,CCK)、肽YY(peptide YY,PYY)等脑肠肽激素,与味觉信号在神经元的传递有关;肠道中鲜味物质谷氨酸钠显著激活大脑缰核、杏仁核和下丘脑亚核的神经网络,表明肠-脑轴味觉感知是基于胃肠道受体及脑肠肽、神经元和大脑中枢神经系统之间的共同调控,从而提出肠-脑轴味觉信号传导机制假说,认为甜味受体T1R2/T1R3和鲜味受体T1R1/T1R3具有相似的信号传导通路,味觉物质作用于肠道后,与肠道中相应的味觉受体结合,激活磷脂酶-β2(phospholipase C-β2,PLC-β2),释放Ca2+,引起肠道内环境的变化,刺激肠内分泌细胞分泌PYY、CCK等激素,被肠神经元突触特异性识别,将味觉信号传导至大脑神经中枢;而谷氨酸代谢型受体4(metabotropic glutamate receptor 4,mGluR4)和苦味受体T2Rs信号传导通路则是通过激活磷酸二酯酶(phosphodiesterase,PDE),使细胞质内3’,5’-环腺苷酸(3’,5’-cyclic adenylic acid,cAMP)浓度降低,从而解除环核苷酸(cyclic nucleotide,cNMP)的抑制作用,从而释放Ca2+。基于肠-脑轴味觉偏好,为味觉发生改变的患者开发治疗新药物、寻找新的药物靶点提供了新的方向。对肠-脑轴味觉信号传导机制的研究将为胃肠道生理的神经控制提供分子框架、精准控制人体对味觉营养物质的生理反应,并对味觉物质在肠-脑轴中的摄入、代谢、调节等及开发新的味觉感知途径提供新的理论依据。

关键词: 肠-脑轴;味觉;受体;感知;神经元

Abstract: Taste is an important part of human perception of biological intake energy. The gastrointestinal tract also has taste perception. In this paper, the taste receptors and perception pathway in the gastrointestinal tract and the taste signal transduction mechanism in the gut-brain axis are analyzed. Taste perception in the gastrointestinal tract indicates that there are taste receptors such as taste receptor type 1 member (T1R)1, T1R2 and T1R3 and taste receptors type 2 (T2Rs) in the gastrointestinal tract, and taste substances stimulate the secretion of cholecystokinin (CCK) and peptide YY (PYY) by intestinal endocrine cells, which is related to the transmission of taste signals in the neurons. The umami substance monosodium glutamate present in the intestinal tract significantly activates the neural networks in the habenulae, amygdala and hypothalamus subnuclei of the brain, suggesting that taste perception in the gut-brain axis is under the co-regulation between gastrointestinal receptors and brain-gut peptides, neurons and the central nervous system of the brain. In this context, a hypothesis about the mechanism of taste signaling via the gut-brain axis has been proposed. It states that sweet taste receptor T1R2/T1R3 and umami taste receptor T1R1/T1R3 had similar signal transduction pathways. After taste substances acts on the intestinal tract, they bind to the corresponding taste receptors in the intestinal tract, activates phospholipase C-β2, releases Ca2+, causes changes in the intestinal environment, and stimulates intestinal endocrine cells to secrete hormones such as PYY and CCK, which are specifically recognized by intestinal neuron synapses,and transmit taste signals to the nerve center of the brain. However, the metabotropic glutamate receptor 4 (mGluR4) and bitter receptor T2Rs signal transduction pathways reduce the concentration of 3’,5’-cyclic adenylic acid in the cytoplasm by activating phosphodiesterase, thereby relieving the inhibition of cyclic nucleotides and releasing Ca2+. Taste preference mediated by the gut-brain axis provides a new direction for the development of new therapeutic drugs and the discovery of new drug targets for patients with changes in taste sensation. Research on the mechanism of taste signal transduction in the gut-brain axis will provide a molecular framework for the neural control of gastrointestinal physiology and accurate control of the physiological response of the human body to taste nutrients, and provide a new theoretical basis for understanding the intake, metabolism and regulation of taste substances in the gut-brain axis and the development of new taste perception pathways.

Key words: gut-brain axis; taste; receptor; perception; neuron

中图分类号: