食品科学 ›› 2024, Vol. 45 ›› Issue (23): 268-277.doi: 10.7506/spkx1002-6630-20240519-115
• 安全检测 • 上一篇
范嘉伟,吴兰,闫晶晶
FAN Jiawei, WU Lan, YAN Jingjing
摘要: 现阶段仓内粮堆表面的粮情检测可由智能设备协助完成。智能设备所采集的粮堆表面图片背景密集复杂、颗粒互相重叠对检测形成噪声干扰。为解决目标检测算法对不完善颗粒的高漏检率并提高模型检测速度,本研究对轻量化网络模型YOLOV4-Tiny进行优化。首先,增加小目标检测层提升高语义信息利用率,其次,嵌入基于指数思想优化的SENet注意力机制模块,由此设计增强特征提取网络提升模型在复杂背景中对不完善颗粒的特征提取能力,提高检测精度并降低漏检率。最后,以深度可分离卷积作为主干部分残差网络的特征提取方式,减少模型的参数计算量,优化模型部署并解决实时性差的问题。实验表明本研究所提出的改进算法IDS-YOLO在检测速度和检测精度之间达到了平衡,相比于其他对比算法模型的均值平均精度平均提升了6.2%;帧率值达到88.03,满足实时检测的要求,改进后模型参数量的大小仅有5.51 MB。
中图分类号: