食品科学 ›› 2025, Vol. 46 ›› Issue (4): 110-116.doi: 10.7506/spkx1002-6630-20240602-002

• 生物工程 • 上一篇    

抗菌肽LL-1对沙门氏菌的抗菌机制

王宇航,周玲玲,周瑶玲,撒俊梦,张元臣,马增军,连凯琪   

  1. (1.安阳工学院生物与食品工程学院,河南 安阳 455000;2.河北科技师范学院动物科技学院,河北 秦皇岛 066004;3.河南省兽用生物制品研发与应用国际联合实验室,河南 安阳 455000;4.河南省太行山林业有害生物野外科学观测研究站,河南 林州 456550)
  • 发布日期:2025-02-07
  • 基金资助:
    河南省科技攻关计划项目(242102110073);河北省现代农业产业技术体系创新团队项目(HBCT2024220208); 安阳市重点研发与推广专项(2023C01NY013)

Antimicrobial Mechanism of Antimicrobial Peptide LL-1 against Salmonella

WANG Yuhang, ZHOU Lingling, ZHOU Yaoling, SA Junmeng, ZHANG Yuanchen, MA Zengjun, LIAN Kaiqi   

  1. (1. School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; 2. College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 3. Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang 455000, China; 4. Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou 456550, China)
  • Published:2025-02-07

摘要: 为探究抗菌肽LL-1对沙门氏菌的抗菌效果及机制,首先通过倍比稀释法测定LL-1对沙门氏菌的最小抑菌浓度(minimal inhibitory concentration,MIC),并以抗菌曲线评价LL-1对沙门氏菌的抗菌效果;然后,使用扫描电子显微镜和透射电子显微镜观察细菌形态,通过检测核酸、蛋白质、碱性磷酸酶(alkaline phosphatase,ALP)的泄漏情况以及碘化丙啶(propidium iodide,PI)染色实验,评价LL-1对沙门氏菌细胞壁和细胞膜的影响,通过核酸凝胶电泳观察LL-1与沙门氏菌DNA结合情况;最后,通过检测胞内琥珀酸脱氢酶(succinate dehydrogenase,SDH)、NADP-苹果酸脱氢酶(NADP-malate dehydrogenase,NADP-MDH)活性以及腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)含量,评价LL-1对沙门氏菌能量代谢的影响。结果表明:LL-1对沙门氏菌的MIC为6.25 μg/mL,有良好的抗菌效果,且呈浓度和时间依赖性;经LL-1处理的沙门氏菌出现菌体皱缩、胞膜溶解和质壁分离等形态变化;沙门氏菌经LL-1处理后,胞内核酸、蛋白质、ALP发生泄漏,并且经PI染色后胞内荧光强度增强,同时LL-1与DNA发生结合;随着LL-1质量浓度的升高,胞内ATP含量下降、SDH及NADP-MDH的活性降低。综上,LL-1能增大沙门氏菌细胞膜和细胞壁的通透性引起胞内容物泄漏,结合其DNA,并通过影响细菌能量代谢等方式抗菌,本实验可为后续深入研究LL-1的抗菌机制和应用奠定基础。

关键词: 沙门氏菌;抗菌肽;抗菌机制;食源性致病菌;细胞膜;能量代谢

Abstract: To explore the antibacterial effect and mechanism of antimicrobial peptide LL-1 against Salmonella, the minimum inhibitory concentration (MIC) was determined by the doubling dilution method, and the antibacterial effect was evaluated by the growth inhibition curve. Then, the bacterial morphology was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of LL-1 on the cell wall and cell membrane of Salmonella was evaluated by detecting the leakage of intracellular nucleic acids, proteins and alkaline phosphatase (ALP) as well as by conducting propidium iodide (PI) staining experiments. The binding of LL-1 to Salmonella DNA was detected by nucleic acid gel electrophoresis. Finally, the effect of LL-1 on the energy metabolism of Salmonella was evaluated by measuring the activities of intracellular succinate dehydrogenase (SDH), NADP-malate dehydrogenase (NADP-MDH) and ATP levels. The results showed that the MIC was 6.25 μg/mL, and LL-1 had a good antibacterial effect in dose- and time-dependent manners. Salmonella treated with LL-1 showed morphological changes such as cell shrinkage, cell membrane dissolution, and plasmolysis. LL-1 resulted in the leakage of intracellular nucleic acids, proteins and ALP and an increase in the fluorescence intensity of PI-stained bacterial cells. Additionally, LL-1 could bind to bacterial DNA. Increasing LL-1 concentration resulted in a decrease in the intracellular ATP content, SDH and NADP-MDH activities. In conclusion, LL-1 could exert its antibacterial activity against Salmonella by increasing the permeability of the cell membrane and cell wall, thereby causing the leakage of intracellular contents, binding to DNA, and affecting bacterial energy metabolism. This study lays the foundation for further research on the antibacterial mechanism and application of LL-1.

Key words: Salmonella; antimicrobial peptides; antimicrobial mechanism; foodborne pathogens; cell membrane; energy metabolism

中图分类号: