食品科学 ›› 2025, Vol. 46 ›› Issue (16): 44-48.doi: 10.7506/spkx1002-6630-20241226-223

• 基础研究 • 上一篇    

燕麦β-葡聚糖提升酵母抗冻性的分子机制

杨静,姬生鑫,蔡杰,杨勇,艾志录,李真   

  1. (1.河南农业大学食品科学技术学院,河南?郑州 450002;2.农业农村部大宗粮食加工重点实验室,河南?郑州 450002;3.速冻面米及调制食品河南省工程实验室,河南?郑州 450002)
  • 发布日期:2025-07-22
  • 基金资助:
    河南省自然科学基金项目(232300420008);“十四五”国家重点研发计划项目(2021YFD2100200;2021YFD2100204)

Molecular Mechanism by Which Oat β-Glucan Enhances Freeze Tolerance in Yeast

YANG Jing, JI Shengxin, CAI Jie, YANG Yong, AI Zhilu, LI Zhen   

  1. (1. College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; 2. Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; 3. Henan Engineering Laboratory of Quick-Frozen Flour-Rice and Prepared Food, Zhengzhou 450002, China)
  • Published:2025-07-22

摘要: 为探究不同添加量(0.5%、1%,以体系质量计)燕麦β-葡聚糖(oat β-glucan,OβG)对酵母抗冻性影响的分子机制,本研究以历经冻融循环(1~5 次)处理及OβG保护前后的酵母细胞为研究对象,运用高通量测序和生物信息学技术,从转录组层面解析与酵母抗冻性相关的代谢途径及关键基因。结果表明,经过3 次冷冻-解冻循环后,0.5%-OβG和1%-OβG组酵母细胞存活率分别高于空白组20.60%、17.08%。根据转录组差异表达基因京都基因与基因组百科全书代谢通路富集结果可知,氨基酸、碳水化合物、脂质等多条代谢途径在OβG增强酵母抗冻性的调节中发挥重要作用。综合分析表明,一方面,添加OβG后,酵母通过下调氨基酸代谢相关基因的表达量,从而减少对氨基酸的消耗,同时VB6生物合成基因表达量下降,使得酵母细胞内的氨基酸含量保持在相对稳定的水平,从而提高了酵母细胞的存活率;另一方面,添加OβG后,酵母细胞中海藻糖合成酶基因的表达水平显著上调,而海藻糖水解酶基因的表达水平则显著下调,这一变化促进了胞内海藻糖的积累。分子伴侣基因CNS1和HSP82以及与脂肪酸合成相关基因Fas1和Phs1在OβG对酵母抗冻性提升方面发挥了重要作用。总之,OβG能通过调节多条代谢途径提升冻融条件下酵母的抗冻性,是一种极具潜力的酵母冷冻保护剂。

关键词: 燕麦β-葡聚糖;酵母;抗冻性;转录组

Abstract: To investigate the molecular mechanism for the effect of oat β-glucan (OβG) at different concentrations (0.5% and 1%) on freeze tolerance in yeast, yeast cells alone or under the protection of OβG were frozen and thawed up to five times. High-throughput sequencing and bioinformatics were used to elucidate the metabolic pathways and key genes associated with yeast freeze tolerance at the transcriptome level. The results indicated that after three cycles of freezing and thawing, the survival rates of yeast cells supplemented with 0.5% OβG and 1% OβG were higher than that of the control group by 20.60% and 17.08%, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes (DEGs) at the transcriptomic level showed that several metabolic pathways including the amino acid metabolism, carbohydrate metabolism, and lipid metabolism pathways played significant roles in the enhancing effect of OβG supplementation on yeast freeze tolerance. Comprehensive analysis revealed that following OβG addition, yeast down-regulated the expression levels of genes related to amino acid metabolism, thereby reducing the consumption of amino acids, while lowering the expression of the VB6 biosynthesis genes, thereby maintaining intracellular amino acids at a relatively stable level, and consequently contributing to increased survival rates. Meanwhile, adding OβG resulted in significant up-regulation of the trehalose synthase gene in yeast cells and significant down-regulation of the trehalose hydrolase gene, facilitating the accumulation of intracellular trehalose. Additionally, the molecular chaperone genes CNS1 and HSP82, as well as the fatty acid synthesis-related genes Fas1 and Phs1, played crucial roles in the enhancing effect of OβG on yeast freeze tolerance. In summary, OβG has the potential to enhance freeze tolerance in yeast under freeze-thaw conditions by regulating multiple metabolic pathways, making it a highly promising cryoprotectant for yeast.

Key words: oat β-glucan; yeast; freeze tolerance; transcriptome

中图分类号: