• Reviews • Previous Articles Next Articles
YANG Guliang, LI Shiming*, WANG Shuzhen*
Online:
2016-07-15
Published:
2016-07-26
Contact:
LI Shiming*, WANG Shuzhen*
CLC Number:
YANG Guliang, LI Shiming, WANG Shuzhen. Progress in Research on Biological Activity and Functions of Ribosome-Inactivating Proteins in Bitter Mellon[J]. FOOD SCIENCE, doi: 10.7506/spkx1002-6630-201613041.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.spkx.net.cn/EN/10.7506/spkx1002-6630-201613041
[1] GATI I, BERGSTROM M, MUHR C, et al. Application of (methyl-11C)-methionine in the multicellular spheroid system[J]. Journal ofNuclear Medicine, 1991, 32(12): 2258-2265.[2] AKKOUH O, NG T B, CHEUNG R C F, et al. Biological activitiesof ribosome-inactivating proteins and their possible applications asantimicrobial, anticancer, and anti-pest agents and in neuroscienceresearch[J]. Applied Microbiology and Biotechnology, 2015, 99(23):1-17. DOI:10.1007/s00253-015-6941-2.[3] STIRPE F, OLSNES S, PIHL A. Gelonin, a new inhibitor of proteinsynthesis, nontoxic to intact cells. Isolation, characterization, andpreparation of cytotoxic complexes with concanavalin[J]. Journal ofBiological Chemistry, 1980, 255(14): 6947-6953.[4] BIERI S, POTRYKUS I, FÜTTERER J. Expression of active barleyseed ribosome-inactivating protein in transgenic wheat[J]. Theoreticaland Applied Genetics, 2000, 100(5): 755-763. DOI:10.1007/s001220051349.[5] MAHMOUD M H, HELA C R, NAIMA B, et al. Ribosome inactivatingprotein of barley enhanced resistance to Rhizoctonia solani in transgenicpotato cultivar ‘Desirée’ in greenhouse conditions[J]. BiotechnologieAgronomie Société Environnement, 2013, 17(1): 20-26.[6] HOUSTON L L,RAMAKRISHNAN S, HERMODSON M A.Seasonal variations in different forms of pokeweed antiviral protein,a potent inactivator of ribosomes[J]. Journal of Biological Chemistry,1983, 258(16): 9601-9604.[7] CHAUDHRY B, MÜLLER-URI F, CAMERON-MILLS V, et al. Thebarley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosomeinactivatingprotein[J]. The Plant Journal, 2003, 6(6): 815-824.DOI:10.1046/j.1365-313X.1994.6060815.x.[8] WANG J H, TAM S C, HUANG H, et al. Site-directed PEGylationof trichosanthin retained its anti-HIV activity with reduced potencyin vitro[J]. Biochemical and Biophysical Research Communications,2004, 317(4): 965-971. DOI:10.1016/j.bbrc.2004.03.139.[9] ZHENG J C, LEI N, HE Q C, et al. PEGylation is effective in reducingimmunogenicity, immunotoxicity, and hepatotoxicity of α-momorcharinin vivo[J]. Immunopharmacology and Immunotoxicology, 2012, 34(5):866-873. DOI:10.3109/08923973.2012.666979.[10] 屈玮, 陈彦光, 吴祖强, 等. 苦瓜提取物抑制3T3-L1脂肪细胞脂肪沉淀研究[J]. 食品科学, 2014, 35(5): 188-192. DOI:10.7506/spkx1002-6630-201405037.[11] 董英, 钱希文, 白娟, 等. 苦瓜改善胰岛素抵抗功能与作用机制研究进展[J]. 食品科学, 2013, 34(21): 369-374. DOI:10.7506/spkx1002-6630-201321073.[12] LICASTRO F, FRANCESCHI C, BARBIERI L, et al. Toicity ofMomordica charantia lectin and inhibitor for human normal andleukaemic lymphocytes[J]. Virchows Archiv B, 1980, 33(2): 257-265.[13] PEUMANS W J, HAO Q, DAMME E J V. Ribosome-inactivatingproteins from plants: more than RNA N-glycosidases[J]. FASEBJournal, 2001, 15(9): 1493-1506. DOI:10.1096/fj.00-0751rev.[14] STRIPE F, BARBIERI M G, SORIA M, et al. Ribosome-Inactivatingproteins from plants: present status and future prospects[J]. NatureBiotechnology, 1992, 10(4): 405-412. DOI:10.1038/nbt0492-405.[15] 张智, 孙素荣, 马纪, 等. 植物中的核糖体失活蛋白及其抗病毒机制[J].植物生理学通讯, 2005, 41(4): 537-541.[16] FONG W P, MOCK W Y, NG T B. Intrinsic ribonuclease activitiesin ribonuclease and ribosome-inactivating proteins from the seedsof bitter gourd[J]. International Journal of Biochemistry and CellBiology, 2000, 32(5): 571-577. DOI:10.1016/S1357-2725(99)00149-1.[17] 傅明辉, 田洁. 苦瓜籽核糖体失活蛋白的分离纯化及抗氧化活性的研究[J]. 中国生化杂志, 2002, 23(3): 134-136. DOI:10.3969/j.issn.1005-1678.2002.03.011.[18] 袁燕, 黄乾明, 刘一江, 等. 不同苦瓜品种MAP30基因的克隆及序列分析[J]. 四川农业大学学报, 2007, 25(1): 58-62. DOI:10.3969/j.issn.1000-2650.2007.01.012.[19] NIELSEN K, BOSTON R S. Ribosome-inactivating proteins: aplant perspective[J]. Annual Review of Plant Physiology and PlantMolecular Biology, 2001, 52(4): 785-816. DOI:10.1146/annurev.arplant.52.1.785.[20] ENDO Y, WOOL I G. The site of action of alpha-sarcin on eukaryoticribosomes. The sequence at the alpha-sarcin cleavage site in 28Sribosomal ribonucleic acid[J]. Journal of Biological Chemistry, 1982,257(15): 9056-9060.[21] MOCK J W, NG T B, WONG R N. Demonstration of ribonucleaseactivity in the plant ribosome-inactivating proteins alpha- andbeta-momorcharins[J]. Life Science, 1996, 59(22): 1853-1859.DOI:10.1016/S0024-3205(96)00532-2.[22] REN J S, WANG Y P, DONG Y C, et al. The N-glycosidasemechanism of ribosome-inactivating proteins implied by crystalstructures of alpha-momorcharin[J]. Structure, 1994, 2(1): 7-16.DOI:10.1016/S0969-2126(00)00004-6.[23] WANG S Z, ZHANG Y B, LIU H G, et al. Molecular cloning andfunctional analysis of a recombinant ribosome-inactivating protein(alpha-momorcharin) from Momordica charantia[J]. AppliedMicrobiology and Biotechnology, 2012, 96: 939-950. DOI:10.1007/s00253-012-3886-6.[24] TYAGI N, TYAGI M, PACHAURI M, et al. Potential therapeuticapplications of plant toxin-ricin in cancer: challenges and advances[J].Tumor Biology, 2015, 36(11): 8239-8246. DOI:10.1007/s13277-015-4028-4.[25] THOMAS T M, YEUNG H W, FONG W P. Deoxyribonucleolyticactivity of α- and β-momorcharins[J]. Life Sciences, 1992, 51(92):1347-1353. DOI:10.1016/0024-3205(92)90634-2.[26] NICOLAS E, GOODIER I D, TARASCHI T F. An additionalmechanism of ribosome-inactivating protein cytotoxicity: degradationof extrachromosomal DNA[J]. Biochemical Journal, 1997, 327(2):413-417.[27] PURI M, KAUR I, PERUGINI M A, et al. Ribosome-inactivatingproteins: current status and biomedical applications[J]. Drug DiscoveryToday, 2012, 17(13/14): 774-783. DOI:10.1016/j.drudis.2012.03.007.[28] 陈敬鑫, 张子沛, 罗金凤, 等. 苦瓜保健功能的研究进展[J]. 食品科学, 2012, 33(1): 271-275. DOI:10.3969/j.issn.1003-7705.2008.06.065.[29] CARMICHAEL J, DEGRAFF W G, GAZDAR A F, et al. Evaluationof a tetrazolium-based semiautomated colorimetric assay:assessment of chemosensitivity testing[J]. Cancer Reseacher, 1987,47(4): 936-942.[30] HUANG Y J, WANG J F, LI G L, et al. Antitumor and antifungalactivities in endophytic fungi isolated from pharmaceutical plantsTaxus mairei, Cephalataxus fortunei and Torreya grandis[J]. FEMSImmunology and Medical Microbiology, 2001, 31(2): 163-167.DOI:10.1111/j.1574-695X.2001.tb00513.x.[31] ADEFOLAJU G A, THERON K E, HOSIE M J. Effects of HIVprotease, nucleoside/non-nucleoside reverse transcriptase inhibitors onBax, Bcl-2 and apoptosis in two cervical cell lines[J]. Biomedicine &P h a r m a c o t h e r a p y , 2 0 1 4 , 6 8 ( 2 ) : 2 4 1 - 2 5 1 . D O I : 1 0 . 1 0 1 6 /j.biopha.2013.08.007.[32] VIVANCO J M, SAVARY B J, FLORES H E. Characterization of twonovel type I ribosome-inactivating proteins from the storage roots ofthe andean crop Mirabilis expansa[J]. Plant Physiology, 1999, 119(4):1447-1456. DOI:10.1104/pp.119.4.1447.[33] LOGEMANN J, JACH G, TOMMERUP H, et al. Expression ofa barley ribosome-inactivating protein leads to increased fungalprotection in transgenic tobacco plants[J]. Nature Biotechnology,1992, 10(3): 305-308. DOI:10.1038/nbt0392-305.[34] BALCONI C, LANZANOVA C, CONTI E, et al. Fusarium headblight evaluation in wheat transgenic plants expressing the maize b-32antifungal gene[J]. European Journal of Plant Pathology, 2007, 117(2):129-140. DOI:10.1007/s10658-006-9079-3.[35] ZHU F, ZHANG P, MENG Y F, et al. Alpha-momorcharin, a RIPproduced by bitter melon, enhances defense response in tobacco plantsagainst diverse plant viruses and shows antifungal activity in vitro[J].Planta, 2013, 237(1): 77-88. DOI:10.1007/s00425-012-1746-3.[36] MANOHARAN G, JAISWAL S R, SINGH J, et al. Effect of α, βmomorcharin on viability, caspase activity, cytochrome c release and oncytosolic calcium levels in different cancer cell lines[J]. Molecular &Cellular Biochemistry, 2014, 388(1/2): 233-240. DOI:10.1007/s11010-013-1914-1.[37] 齐文波, 徐中平, 徐誉泰, 等. 苦瓜素的分离纯化与抗肿瘤活性的研究[J]. 离子交换与吸附, 1999, 15(1): 59-63.[38] SCHOLZ J, BROOM D C, YOUN D H, et al, Blocking caspaseactivity prevents transsynaptic neuronal apoptosis and the loss ofinhibition in lamina II of the dorsal horn after peripheral nerveinjury[J]. The Journal of Neuroscience, 2005, 25(32): 7317-7323.DOI:10.1523/JNEUROSCI.1526-05.2005.[39] ZACHARAKI T, SOPHOU S, GIANNAKOPOULOU A, et al.Natural and lesion-induced apoptosis in the dorsal lateral geniculatenucleus during development[J]. Brain Research, 2010, 1344(1): 62-76.DOI:10.1016/j.brainres.2010.05.021.[40] MOMENTI H R, MEHRANJANI M S, SHARIATZADEH M A, et al.Caspase-mediated apoptosis in sensory neurons of cultured dorsal rootganglia in adult mouse[J]. Cell Journal, 2013, 15(3): 212-218.[41] DAS A, SRIBNICK E A, WINGRAVE J M, et al. Calpain activationin apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposedto glutamate: calpain inhibition provides functional neuroprotection[J].Journal of Neuroscience Research, 2005, 81(4): 551-562.DOI:10.1002/jnr.20581.[42] ARMITAGE B, YU C, DEVADOSS C, et al. Cationic anthraquinonederivatives as catalytic DNA photonucleases: mechanisms for DNAdamage and quinone recycling[J]. Journal of the American ChemicalSociety, 1994, 116(22): 9847-9859. DOI:10.1021/ja00101a005.[43] 万莉, 孟延发, 沈富兵, 等. 苦瓜蛋白RIP的免疫毒性研究[J]. 四川大学学报, 2009, 40(6): 1033-1037. DOI:10.3969/j.issn.1672-173X.2009.06.015.[44] SONG Z P, ZHAN H, ZHOU Y H. Anthraquinone based polymeras high performance cathode material for rechargeable lithiumbatteries[J]. Chemical Communications, 2009, 4(4): 448-450.DOI:10.1039/B814515F.[45] HAGMANN W K. The many roles for fluorine in medicinalchemistry[J]. Journal of Medicinal Chemistry, 2008, 51(15): 4359-4369.DOI:10.1021/jm800219f.[46] PORRO G, BOLOGNESI A, CARETTO P, et al. In vitro and in vivoproperties of an anti-CD5-momordin immunotoxin on normal andneoplastic T lymphocytes[J]. Cancer Immunol Immunother, 1993,36(5): 346-350.
|
[1] | CHEN Xuan, CHEN Xu, HAN Jinzhi, WANG Shaoyun. A Review of Antimicrobial Peptides from Marine Fish and Its Potential Application in Food Safety [J]. FOOD SCIENCE, 2021, 42(9): 328-335. |
[2] | WANG Chunchun, QIN Xiaoli, KAN Jianquan, LIU Xiong, SUO Huayi, ZHONG Jinfeng. Comparison of Reactive Sites of Different Fatty Acid Molecules by Quantum Chemistry Calculation [J]. FOOD SCIENCE, 2021, 42(8): 74-80. |
[3] | LIN Shanting, HU Xiao, LI Laihao, YANG Xianqing, CHEN Shengjun, WU Yanyan, HUANG Hui, RONG Hui. Preparation and Characterization of Peptide-Fe2+ Complexes from Tilapia Skin Protein [J]. FOOD SCIENCE, 2021, 42(8): 157-164. |
[4] | LU Dingqiang, PANG Guangchang. Advances in G-Protein Coupled Estrogen Receptor and Its Application in Food Function Evaluation [J]. FOOD SCIENCE, 2021, 42(7): 1-28. |
[5] | GUO Gangjun, HU Xiaojing, FU Jiarong, MA Shangxuan, XU Rong, HUANG Kechang, PENG Zhidong, HE Xiyong, ZOU Jianyun. Determination and Correlation Analysis of Functional Components and Antioxidant Activity of Successive Solvent Extracts from Macadamia Green Husk [J]. FOOD SCIENCE, 2021, 42(7): 74-82. |
[6] | ZHANG Qiyue, ZHANG Shikai, XI Liangqing, DU Haiyun, WU Peng. Effects of Different Extraction Methods on the Structure, Physicochemical and Functional Properties of Water-Soluble Dietary Fiber from Cherry Wine Dregs [J]. FOOD SCIENCE, 2021, 42(7): 98-105. |
[7] | PENG Xiao, ZOU Wenjing, SHAO Qingqing, SUN Zhongguan, ZHANG Lihua, LI Hehe, WANG Xueshan. Fungal Community Succession and Flavor Compounds Metabolism during Pomegranate Wine Fermentation [J]. FOOD SCIENCE, 2021, 42(6): 157-163. |
[8] | GUO Zhuang, WANG Yurong, GE Dongying, SHANG Xuejiao, ZHANG Zhendong, ZHAO Huijun. Analysis of Bacterial Diversity and Its Effect on Flavor of Chinese Sausage during Fermentation [J]. FOOD SCIENCE, 2021, 42(6): 186-192. |
[9] | LI Mingliang, JIANG Sheng, GUO Ying, CHEN Liang, WANG Yuchen, CAI Muyi, GU Ruizeng, WEI Ying. Ameliorative Effect of Perilla Seed Peptide on Cyclophosphamide-Induced Sexual Function Impairment of Rats [J]. FOOD SCIENCE, 2021, 42(5): 177-186. |
[10] | LI Yunlong, ZHAO Yueliang, FAN Daming, WANG Mingfu. Effects of Phytochemicals from Spices on Quality Attributes and Health Benefits of Meat Products: A Review [J]. FOOD SCIENCE, 2021, 42(5): 262-270. |
[11] | CHEN Qiaoli, YANG Bing, HONG Qingyue, WEI Xunyu, FANG Chuchu, KAN Jianquan. Recent Progress in the Classification and Toxic Mechanism of Marine Biotoxins and Technologies for Their Detection [J]. FOOD SCIENCE, 2021, 42(5): 321-331. |
[12] | ZHOU Yiming, DU Lina, LI Yunlong, ZHOU Xiaoli, CHEN Zhidong. Effects of High Hydrostatic Pressure and Heat Treatment on Functional Properties of Buckwheat Protein [J]. FOOD SCIENCE, 2021, 42(5): 77-83. |
[13] | WU Xiaojuan, WANG Xiaochan, ZHANG Jiani, SHEN Jiali, LI Yi, JIN Manqin, WU Wei. Effect of Alkaline pH-Shifting Combined with Heat Treatment on the Structural and Functional Properties of Rice Bran Protein [J]. FOOD SCIENCE, 2021, 42(4): 23-30. |
[14] | YANG Li, ZHANG Miao, JIA Hongfeng, TU Mengjie, HUANG Ying, SONG Lushan, YAN Liqiang. Modelling for Pungency Grading of Spicy Hot Pot Seasonings Based on Capsaicinoid Content Determined by HPLC and Analysis of Its Changes during Boiling [J]. FOOD SCIENCE, 2021, 42(4): 233-239. |
[15] | ZHOU Ping, ZHENG Jie. Modification of Anthocyanins for Extended Application: A Review [J]. FOOD SCIENCE, 2021, 42(3): 346-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||