FOOD SCIENCE ›› 0, Vol. ›› Issue (): 0-0.
• Reviews • Next Articles
Dan-Ning N/ASHEN 2, 2, 2, 2
Received:2016-08-28
Revised:2017-10-11
Online:2017-12-15
Published:2017-12-07
CLC Number:
Dan-Ning N/ASHEN. Application of Proton Transfer Reaction Mass Spectrometer in Analyze of Volatile Organic Compounds in Food[J]. FOOD SCIENCE, 0, (): 0-0.
| [1] DEWULF J, VAN LANGENHOVE H, WITTMANN G. Analysis of volatile organic compounds using gas chromatography[J]. TrAC Trends in Analytical Chemistry, 2002, 21(9): 637-646. DOI:10.1016/S0165-9936(02)00804-X.[2] PORTILLO-ESTRADA M. Advantages of PTR-MS and PTR-TOF-MS techniques for measuring volatile organic compounds (VOCs)[J]. Scientific Bulletin of ESCORENA, 2013, 8: 65-67.[3] BEAUCHAMP J, HERBIG J, DUNKL J, et al. On the performance of proton-transfer-reaction mass spectrometry for breath-relevant gas matrices[J]. Measurement Science and Technology, 2013, 24(12): 125003. DOI:10.1088/0957-0233/24/12/125003.[4] LINDINGER W, HIRBER J, PARETZKE H. An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis[J]. International journal of mass spectrometry and ion processes, 1993, 129: 79-88. DOI:10.1016/0168-1176(93)87031-M.[5] ZHAN X, DUAN J, DUAN Y. Recent developments of proton‐transfer reaction mass spectrometry (PTR‐MS) and its applications in medical research[J]. Mass spectrometry reviews, 2013, 32(2): 143-165. DOI: 10.1002/mas.21357.[6] LINDINGER W, HANSEL A, JORDAN A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. International Journal of Mass Spectrometry and Ion Processes, 1998, 173(3): 191-241. DOI:10.1016/S0168-1176(97)00281-4.[7] BOSCAINI E, ALEXANDER M L, PRAZELLER P, et al. Membrane inlet proton transfer reaction mass spectrometry (MI-PTRMS) for direct measurements of VOCs in water[J]. International Journal of Mass Spectrometry, 2004, 239(2): 171-177. DOI:10.1016/j.ijms.2004.09.029.[8] LOUARN E, HAMROUNI A, COLBEAU-JUSTIN C, et al. Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water[J]. International Journal of Mass Spectrometry, 2013, 353: 26-35. DOI:10.1016/j.ijms.2013.07.001[9] JüRSCHIK S, TANI A, SULZER P, et al. Direct aqueous injection analysis of trace compounds in water with proton-transfer-reaction mass spectrometry (PTR-MS)[J]. International Journal of Mass Spectrometry, 2010, 289(2): 173-176. DOI:10.1016/j.ijms.2009.11.002.[10] BIASIOLI F, YERETZIAN C, M?RK T D, et al. Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis[J]. TrAC Trends in Analytical Chemistry, 2011, 30(7): 1003-1017. DOI:10.1016/j.trac.2011.04.005.[11] PATEL M A. Development and Verification of Injection Systems for Proton Transfer Reaction Mass Spectrometry (PTR-MS) Analysis of Diverse Volatile Organic Compounds[D]. Leicester: University of Leicester, 2015.[12] KAMEYAMA S, TANIMOTO H, INOMATA S, et al. High-resolution measurement of multiple volatile organic compounds dissolved in seawater using equilibrator inlet–proton transfer reaction-mass spectrometry (EI–PTR-MS)[J]. Marine Chemistry, 2010, 122(1): 59-73. DOI:10.1016/j.marchem.2010.08.003.[13] BLAKE R S, MONKS P S, ELLIS A M. Proton-transfer reaction mass spectrometry[J]. Chemical reviews, 2009, 109(3): 861-896. DOI: 10.1021/cr800364q.[14] INOMATA S, TANIMOTO H, AOKI N, et al. A novel discharge source of hydronium ions for proton transfer reaction ionization: design, characterization, and performance[J]. Rapid communications in mass spectrometry, 2006, 20(6): 1025-1029. DOI: 10.1002/rcm.2405.[15] YUAN B, KOSS A, WARNEKE C, et al. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2735-2752. DOI:10.5194/amt-9-2735-2016[16] HANSON D R, KOPPES M, STOFFERS A, et al. Proton transfer mass spectrometry at 11hPa with a circular glow discharge: Sensitivities and applications[J]. International Journal of Mass Spectrometry, 2009, 282(1): 28-37. DOI:10.1016/j.ijms.2009.01.021.[17] JORDAN A, HAIDACHER S, HANEL G, et al. An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+ SRI? MS)[J]. International Journal of Mass Spectrometry, 2009, 286(1): 32-38. DOI:10.1016/j.ijms.2009.06.006.[18] INOMATA S, TANIMOTO H, YAMADA H. Mass spectrometric detection of alkanes using NO+ chemical ionization in proton-transfer-reaction plus switchable reagent ion mass spectrometry[J]. Chemistry Letters, 2014, 43(4): 538-540. DOI:10.1246/cl.131105.[19] DUNNE E, GALBALLY I E, LAWSON S, et al. Interference in the PTR-MS measurement of acetonitrile at m/z 42 in polluted urban air—A study using switchable reagent ion PTR-MS[J]. International Journal of Mass Spectrometry, 2012, 319: 40-47. DOI:10.1016/j.ijms.2012.05.004.[20] CAPPELLIN L, MAKHOUL S, SCHUHFRIED E, et al. Ethylene: Absolute real-time high-sensitivity detection with PTR/SRI-MS. The example of fruits, leaves and bacteria[J]. International Journal of Mass Spectrometry, 2014, 365: 33-41. DOI:10.1016/j.ijms.2013.12.004.[21] ?ZDESTAN ?, VAN RUTH S M, ALEWIJN M, et al. Differentiation of specialty coffees by proton transfer reaction-mass spectrometry[J]. Food research international, 2013, 53(1): 433-439. DOI:10.1016/j.foodres.2013.05.013.[22] YENER S, ROMANO A, CAPPELLIN L, et al. PTR‐ToF‐MS characterisation of roasted coffees (C. arabica) from different geographic origins[J]. Journal of Mass Spectrometry, 2014, 49(9): 929-935. DOI: 10.1002/jms.3455.[23] YENER S, ROMANO A, CAPPELLIN L, et al. Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS[J]. Food Research International, 2015, 69: 235-243. DOI:10.1016/j.foodres.2014.12.046.[24] ARAGHIPOUR N, COLINEAU J, KOOT A, et al. Geographical origin classification of olive oils by PTR-MS[J]. Food Chemistry, 2008, 108(1): 374-383. DOI:10.1016/j.foodchem.2007.10.056.[25] APREA E, BIASIOLI F, SANI G, et al. Proton transfer reaction-mass spectrometry (PTR-MS) headspace analysis for rapid detection of oxidative alteration of olive oil[J]. Journal of agricultural and food chemistry, 2006, 54(20): 7635-7640. DOI: 10.1021/jf060970r.[26] APREA E, BIASIOLI F, CARLIN S, et al. Rapid white truffle headspace analysis by proton transfer reaction mass spectrometry and comparison with solid‐phase microextraction coupled with gas chromatography/mass spectrometry[J]. Rapid communications in mass spectrometry, 2007, 21(16): 2564-2572. DOI: 10.1002/rcm.3118.[27] TAITI C, COSTA C, MENESATTI P, et al. Class‐modeling approach to PTR‐TOFMS data: a peppers case study[J]. Journal of the Science of Food and Agriculture, 2015, 95(8): 1757-1763. DOI: 10.1002/jsfa.6761.[28] POZO‐BAYóN M á, MARTíN‐áLVAREZ P J, REINECCIUS G A. Monitoring changes in the volatile profile of cheese crackers during storage using GC–MS and PTR–MS[J]. Flavour and fragrance journal, 2009, 24(3): 133-139. DOI:10.1002/ffj.1924.[29] GRANITTO P M, BIASIOLI F, APREA E, et al. Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques[J]. Sensors and actuators B: Chemical, 2007, 121(2): 379-385. DOI:10.1016/j.snb.2006.03.047.[30] CAPPELLIN L, APREA E, GRANITTO P, et al. Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC–MS and PTR-MS[J]. Food research international, 2013, 54(1): 1313-1320. DOI:10.1016/j.foodres.2013.02.004.[31] CAMPBELL-SILLS H, CAPOZZI V, ROMANO A, et al. Advances in wine analysis by PTR-ToF-MS: Optimization of the method and discrimination of wines from different geographical origins and fermented with different malolactic starters[J]. International Journal of Mass Spectrometry, 2016, 397: 42-51. DOI:10.1016/j.ijms.2016.02.001.[32] YENER S, SáNCHEZ-LóPEZ J A, GRANITTO P M, et al. Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS[J]. Talanta, 2016, 152: 45-53. DOI:10.1016/j.talanta.2016.01.050.[33] SCHUHFRIED E, DEL PULGAR J S, BOBBA M, et al. Classification of 7 monofloral honey varieties by PTR-ToF-MS direct headspace analysis and chemometrics[J]. Talanta, 2016, 147: 213-219. DOI:10.1016/j.talanta.2015.09.062.[34] GASPERI F, GALLERANI G, BOSCHETTI A, et al. The mozzarella cheese flavour profile: a comparison between judge panel analysis and proton transfer reaction mass spectrometry[J]. Journal of the Science of Food and Agriculture, 2001, 81(3): 357-363. DOI: 10.1002/1097-0010(200102)81:3<357::AID-JSFA818>3.0.CO;2-O.[35] BIASIOLI F, GASPERI F, APREA E, et al. Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of “Trentingrana” cheese[J]. Food quality and preference, 2006, 17(1): 63-75. DOI:10.1016/j.foodqual.2005.06.004.[36] LINDINGER C, LABBE D, POLLIEN P, et al. When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee[J]. Analytical chemistry, 2008, 80(5): 1574-1581. DOI: 10.1021/ac702196z.[37] HEENAN S P, DUFOUR J P, HAMID N, et al. Characterisation of fresh bread flavour: Relationships between sensory characteristics and volatile composition[J]. Food Chemistry, 2009, 116(1): 249-257. DOI:10.1016/j.foodchem.2009.02.042[38] MAYR D, MARGESIN R, KLINGSBICHEL E, et al. Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry[J]. Applied and environmental microbiology, 2003, 69(8): 4697-4705. DOI: 10.1128/AEM.69.8.4697-4705.2003.[39] JAKSCH D, MARGESIN R, MIKOVINY T, et al. The effect of ozone treatment on the microbial contamination of pork meat measured by detecting the emissions using PTR-MS and by enumeration of microorganisms[J]. International Journal of Mass Spectrometry, 2004, 239(2): 209-214. DOI:10.1016/j.ijms.2004.07.018.[40] HOLM E S, ADAMSEN A P S, FEILBERG A, et al. Quality changes during storage of cooked and sliced meat products measured with PTR-MS and HS-GC–MS[J]. Meat science, 2013, 95(2): 302-310. DOI:10.1016/j.meatsci.2013.04.046.[41] RASEETHA S, HEENAN S P, OEY I, et al. A new strategy to assess the quality of broccoli (Brassica oleracea L. italica) based on enzymatic changes and volatile mass ion profile using Proton Transfer Reaction Mass Spectrometry (PTR-MS)[J]. Innovative Food Science & Emerging Technologies, 2011, 12(2): 197-205. DOI:10.1016/j.ifset.2010.12.005.[42] FARNETI B, CRISTESCU S M, COSTA G, et al. Rapid Tomato Volatile Profiling by Using Proton‐Transfer Reaction Mass Spectrometry (PTR‐MS)[J]. Journal of Food Science, 2012, 77(5): C551-C559. DOI: 10.1111/j.1750-3841.2012.02679.x.[43] FABRIS A, BIASIOLI F, GRANITTO P M, et al. PTR‐TOF‐MS and data‐mining methods for rapid characterisation of agro‐industrial samples: influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese[J]. Journal of mass spectrometry, 2010, 45(9): 1065-1074. DOI: 10.1002/jms.1797.[44] SOUKOULIS C, CAPPELLIN L, APREA E, et al. PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening[J]. Food and Bioprocess Technology, 2013, 6(10): 2831-2843. DOI: 10.1007/s11947-012-0930-6.[45] CIESA F, DALLA VIA J, WISTHALER A, et al. Discrimination of four different postharvest treatments of ‘Red Delicious’ apples based on their volatile organic compound (VOC) emissions during shelf-life measured by proton transfer reaction mass spectrometry (PTR-MS)[J]. Postharvest Biology and Technology, 2013, 86: 329-336. DOI:10.1016/j.postharvbio.2013.06.036.[46] CIESA F, H?LLER I, GUERRA W, et al. Chemodiversity in the Fingerprint Analysis of Volatile Organic Compounds (VOCs) of 35 Old and 7 Modern Apple Cultivars Determined by Proton‐Transfer‐Reaction Mass Spectrometry (PTR‐MS) in Two Different Seasons[J]. Chemistry & biodiversity, 2015, 12(5): 800-812. DOI: 10.1002/cbdv.201400384.[47] ROBERTS D D, POLLIEN P, YERETZIAN C, et al. Nosespace analysis with proton-transfer-reaction mass spectrometry: intra-and interpersonal variability[M]. Dekker: New York, 2004.[48] VAN RUTH S M, ROOZEN J P. Influence of mastication and saliva on aroma release in a model mouth system[J]. Food Chemistry, 2000, 71(3): 339-345. DOI:10.1016/S0308-8146(00)00186-2.[49] MAYR D, M?RK T, LINDINGER W, et al. Breath-by-breath analysis of banana aroma by proton transfer reaction mass spectrometry[J]. International Journal of Mass Spectrometry, 2003, 223: 743-756. DOI:10.1016/S1387-3806(02)00967-3[50] ROMANO A, CAPPELLIN L, TING V, et al. Nosespace analysis by PTR-ToF-MS for the characterization of food and tasters: The case study of coffee[J]. International Journal of Mass Spectrometry, 2014, 365: 20-27. DOI:10.1016/j.ijms.2013.12.001.[51] VAN RUTH S M, BUHR K. Influence of saliva on temporal volatile flavour release from red bell peppers determined by proton transfer reaction-mass spectrometry[J]. European Food Research and Technology, 2003, 216(3): 220-223. DOI: 10.1007/s00217-002-0630-y.[52] VAN RUTH S M, BUHR K. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction–mass spectrometry[J]. International Journal of Mass Spectrometry, 2004, 239(2): 187-192. DOI:10.1016/j.ijms.2004.08.009.[53] FARNETI B, ALARCóN A A, CRISTESCU S M, et al. Aroma volatile release kinetics of tomato genotypes measured by PTR-MS following artificial chewing[J]. Food research international, 2013, 54(2): 1579-1588. DOI:10.1016/j.foodres.2013.09.015.[54] VAN RUTH S M, FRASNELLI J, CARBONELL L. Volatile flavour retention in food technology and during consumption: Juice and custard examples[J]. Food chemistry, 2008, 106(4): 1385-1392. DOI:10.1016/j.foodchem.2007.08.093.[55] APREA E, BIASIOLI F, GASPERI F, et al. In vivo monitoring of strawberry flavour release from model custards: effect of texture and oral processing[J]. Flavour and fragrance Journal, 2006, 21(1): 53-58. DOI: 10.1002/ffj.1702.[56] DéLéRIS I, SAINT-EVE A, DAKOWSKI F, et al. The dynamics of aroma release during consumption of candies of different structures, and relationship with temporal perception[J]. Food Chemistry, 2011, 127(4): 1615-1624.[57] HEENAN S, SOUKOULIS C, SILCOCK P, et al. PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition[J]. Food chemistry, 2012, 131(2): 477-484. DOI:10.1016/j.foodchem.2011.09.010.[58] LASEKAN O, OTTO S. In vivo analysis of palm wine (Elaeis guineensis) volatile organic compounds (VOCs) by proton transfer reaction-mass spectrometry[J]. International Journal of Mass Spectrometry, 2009, 282(1): 45-49. DOI:10.1016/j.ijms.2009.02.005[59] MU?OZ‐GONZáLEZ C, SéMON E, MARTíN‐áLVAREZ P J, et al. Wine matrix composition affects temporal aroma release as measured by proton transfer reaction–time‐of‐flight–mass spectrometry[J]. Australian Journal of Grape and Wine Research, 2015, 21(3): 367-375. DOI: 10.1111/ajgw.12155.[60] SOUKOULIS C, APREA E, BIASIOLI F, et al. Proton transfer reaction time‐of‐flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk[J]. Rapid Communications in Mass Spectrometry, 2010, 24(14): 2127-2134. DOI: 10.1002/rcm.4617.[61] TSEVDOU M, SOUKOULIS C, CAPPELLIN L, et al. Monitoring the effect of high pressure and transglutaminase treatment of milk on the evolution of flavour compounds during lactic acid fermentation using PTR-ToF-MS[J]. Food chemistry, 2013, 138(4): 2159-2167. DOI:10.1016/j.foodchem.2012.12.007.[62] CAPOZZI V, MAKHOUL S, APREA E, et al. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin[J]. Molecules, 2016, 21(4): 483. DOI:10.3390/molecules21040483.[63] CUENCA M, CIESA F, ROMANO A, et al. Mead fermentation monitoring by proton transfer reaction mass spectrometry and medium infrared probe[J]. European Food Research and Technology, 2016: 1-8. DOI: 10.1007/s00217-016-2675-3.[64] WIELAND F, GLOESS A N, KELLER M, et al. Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): towards a real-time process control for a consistent roast profile[J]. Analytical and bioanalytical chemistry, 2012, 402(8): 2531-2543. DOI: 10.1007/s00216-011-5401-9.[65] GLOESS A N, VIETRI A, WIELAND F, et al. Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS[J]. International Journal of Mass Spectrometry, 2014, 365: 324-337. DOI:10.1016/j.ijms.2014.02.010.[66] LóPEZ J A S, WELLINGER M, GLOESS A N, et al. Extraction kinetics of coffee aroma compounds using a semi-automatic machine: On-line analysis by PTR-ToF-MS[J]. International Journal of Mass Spectrometry, 2016, 401: 22-30. DOI:10.1016/j.ijms.2016.02.015.[67] L?KKE M M, EDELENBOS M, LARSEN E, et al. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS)[J]. Sensors, 2012, 12(12): 16060-16076. DOI:10.3390/s121216060.[68] TYAPKOVA O, SIEFARTH C, SCHWEIGGERT-WEISZ U, et al. Flavor release from sugar-containing and sugar-free confectionary egg albumen foams[J]. LWT-Food Science and Technology, 2016, 69: 538-545. DOI:10.1016/j.lwt.2016.01.075.[69] WHITE I R, BLAKE R S, TAYLOR A J, et al. Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv.‘Tommy Atkins’ by real-time measurement of volatile organic compounds[J]. Metabolomics, 2016, 12(3): 1-11. DOI: 10.1007/s11306-016-0973-1.[70] FRANKE C, BEAUCHAMP J. Real-Time Detection of Volatiles Released During Meat Spoilage: a Case Study of Modified Atmosphere-Packaged Chicken Breast Fillets Inoculated with Br. thermosphacta[J]. Food Analytical Methods, 2016: 1-10. DOI: 10.1007/s12161-016-0585-4.[71] ZARDIN E, SILCOCK P, SIEFARTH C, et al. Dynamic changes in the volatiles and sensory properties of chilled milk during exposure to light[J]. International Dairy Journal, 2016, 62: 35-38. DOI:10.1016/j.idairyj.2016.07.005.[72] 沈成银, 李建权, 王宏志, 等. 呼气中痕量挥发性有机物的质子转移反应质谱在线检测研究[J]. 分析化学, 2012, 40(5): 773-777. DOI:10.3724/SP.J.1096.2012.10983.[73] 杨彬, 沈成银, 王宏志, 等. 高血糖人群呼气标志物的质子转移反应质谱研究[J]. 分析测试学报, 2013, 32(5): 553-558. DOI: 10. 3969 /j. issn. 1004 - 4957. 2013. 05. 006.[74] 刘芮伶, 黄晓锋, 何凌燕, 等. 质子转移反应质谱在线测量大气挥发性有机物及来源研究——以深圳夏季为例[J]. 环境科学学报, 2012, 32(10): 2540-2547.[75] 柯丽霞, 沈成银, 黄超群, 等. 质子转移反应质谱检测不同品种桂花挥发性有机物[J]. 大气与环境光学学报, 2015, 1: 004. DOI:10.3969/j.issn.1673-6141.2015.01.004.[76] 赵学玒, 李维康, 杜康, 等. 质子转移反应质谱在呼气检测领域的研究进展[J]. 生物医学工程学杂志, 2015, 32(6): 1374-1379.DOI:10.7507/1001-5515.20150243.[77] 李子晓, 赵学玒, 李维康, 等. 质子转移反应质谱法测量呼气丙酮的影响因素分析[J]. 质谱学报, 2016, 37(4): 351-358. DOI:10.7538/zpxb.youxian.2016.0011.[78] 李子晓. 基于PTR-MS的橙汁香气物质分析及产地区分方法研究[D].天津:天津大学, 2015.[79] 志中华, 沈成银, 杨彬, 等. 猪肉冷藏过程中顶空挥发性有机物快速检测研究[J]. 大气与环境光学学报, 2012, 7(4): 276-281. DOI:10.3969/j.issn.1673-6141.2012.04.006.[80] RUZSANYI V, FISCHER L, HERBIG J, et al. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2013, 1316: 112-118. DOI:10.1016/j.chroma.2013.09.072.[81] MATERI? D, LANZA M, SULZER P, et al. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC[J]. Analytical and bioanalytical chemistry, 2015, 407(25): 7757-7763. DOI :10.1007/s00216-015-8942-5 .[82] MASI E, TAITI C, HEIMLER D, et al. PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran[J]. Food chemistry, 2016, 192: 75-81. DOI:10.1016/j.foodchem.2015.06.090. |
| [1] | LIU Dengyong, CAO Zhenxia. Aroma Release from Stewed Pork with Brown Sauce during Oral Processing [J]. FOOD SCIENCE, 2020, 41(4): 164-171. |
| [2] | HAN Bolin, GUAN Huanan, GONG Dezhuang, YU Shiyou, LIU Xiaofei, ZHANG Na. Detection of Glucose in Food Using Gold Magnetic Nanoparticles with Peroxidase Mimicking Activity [J]. FOOD SCIENCE, 2019, 40(22): 331-338. |
| [3] | ZHANG Kaijie, QIN Sinan, ZHAO Chunjuan, GAO Wenhui. ZHANG Kaijie, QIN Sinan, ZHAO Chunjuan, GAO Wenhui [J]. FOOD SCIENCE, 2019, 40(20): 338-345. |
| [4] | JIN Jing, XIE Shunping, JI Houwei, ZOU Ximei, ZHANG Li, LIU Jian. Analysis and Application of Microbial Volatile Organic Compounds in Agricultural Products [J]. FOOD SCIENCE, 2018, 39(9): 326-332. |
| [5] | LIU Xiaopeng, HE Quanguo, LIU Jun, LI Guangli, LIANG Jing, DENG Peihong. Recent Progress in Electrochemical Detection of Nitrite in Foodstuffs Using Graphene-Based Composite Materials [J]. FOOD SCIENCE, 2018, 39(23): 337-345. |
| [6] | SHEN Danning, ZHAO Xuehong, SUN Yun, WANG Yan, JIANG Xuehui, MI Jiebo. A Review of the Application of Proton Transfer Reaction Mass Spectrometry in the Analysis of Volatile Organic Compounds in Foods [J]. FOOD SCIENCE, 2017, 38(23): 289-297. |
| [7] | HUA Xiaoxia, ZHENG Xiangli, LIU Shan, XIA Fangquan, ZHOU Changli. Electrochemical Behavior and Determination of Bisphenol A at Carbon Paste Electrode Modified with Ionic Liquid [J]. FOOD SCIENCE, 2015, 36(22): 152-155. |
| [8] | TANG Jun, YAN Caizhi, CHEN Lunchao. Characteristics of Food Inspection Agency Management in Developed Countries and Their Inspirations for China [J]. FOOD SCIENCE, 2015, 36(17): 310-315. |
| [9] | LU Ding-qiang, PANG Guang-chang*. Recent Development and Application of Electrochemical Nanometer Immunosensors in Food Detection [J]. FOOD SCIENCE, 2014, 35(8): 6-10. |
| [10] | . In Situ Real-Time Monitoring of Volatile Metabolites of Fermented Milk by Dynamic Headspace Sampling - Atmospheric Pressure Ionization Mass Spectrometry [J]. FOOD SCIENCE, 2012, 33(24): 307-310. |
| [11] | QIAN Zhi-wei,SUN Xin-cheng. Establishment and Application of a Multiplex PCR Assay for Detection of Three Pathogenic Bacteria in Food [J]. FOOD SCIENCE, 2011, 32(16): 236-239. |
| [12] | ZHAO Jian,LIU Xuan,WEN Jing*. Total Antioxidant Capacity Determination of Health Food by Fluorescence Spectrophotometer [J]. FOOD SCIENCE, 2010, 31(22): 301-305. |
| [13] | WANG Shou-fa1,KAN Chun-yue2,XU Xue-shu3. Application of ELISA Method in Food Detection [J]. FOOD SCIENCE, 2009, 30(23): 489-492. |
| [14] | YUAN He-qing1,LI Ping1,LIU You-sheng2,ZHOU Chang-sheng2,CAO Ming2. Detection of Mycobacterium tuberculos in Food Using Piezoelectric Bulk Acoustic Wave Biosensor [J]. FOOD SCIENCE, 2009, 30(2 ): 201-203. |
| [15] | QIN Wen, DONG Jie, Gao-Dong-Wei, Wu-Hong-Zhong. Study on Quantitative Detection of Transgenic Genes [J]. FOOD SCIENCE, 2001, 22(7): 59-62. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||