| 参考文献[1] Xiao ZJ, Xie NZ, Liu PH, et al. Tetramethylpyrazine production from glucose by a newly isolated Bacillus mutant[J]. Appl Microbiol Biotechnol, 2006,73(3):512-518. DOI: 10.1007/s00253-006-0491-6.[2] Wu S, Xu T, Akoh CC. Effect of roasting on the volatile constituents of Trichosanthes kirilowii seeds[J]. J Food Drug Anal, 2014, 22(3):310-317. DOI: 10.1016/j.jfda.2013.12.005.[3] Xiao Z, Dai S, Niu Y, et al. Discrimination of Chinese Vinegars Based on Headspace Solid-Phase Microextraction-Gas Chromatography Mass Spectrometry of Volatile Compounds and Multivariate Analysis[J]. JOURNAL OF FOOD SCIENCE, 2011, 76(8):C1125-C1135. DOI: 10.1111/j.1750-3841.2011.02356.x.[4] Fan W, Xu Y, Zhang Y. Characterization of pyrazines in some Chinese liquors and their approximate concentrations[J]. J Agric Food Chem, 2007, 55(24):9956-9962. DOI: 10.1021/jf071357q.[5] Zhu BF, Xu Y, Fan WL. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach[J]. J Ind Microbiol Biotechnol, 2010, 37(2):179-186. DOI: 10.1007/s10295-009-0661-5.[6] Feng Y, Su G, Zhao H, et al. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test[J]. Food Chem, 2015, 167:220-228. DOI: 10.1016/j.foodchem.2014.06.057.[7] Dajanta K, Apichartsrangkoon A, Chukeatirote E. Volatile profiles of thua nao, a Thai fermented soy product[J]. FOOD CHEMISTRY, 2011, 125(2):464-470. DOI: 10.1016/j.foodchem.2010.09.030.[8] Inoue Y, Kato S, Saikusa M, et al. Analysis of the cooked aroma and odorants that contribute to umami aftertaste of soy miso (Japanese soybean paste)[J]. FOOD CHEMISTRY, 2016, 213(dec.15):521-528. DOI: 10.1016/j.foodchem.2016.06.106.[9] Smith AL, Barringer SA. Color and volatile analysis of peanuts roasted using oven and microwave technologies[J]. J Food Sci, 2014, 79(10):C1895-1906. DOI: 10.1111/1750-3841.12588.[10] G. L, Baker, J. A, et al. Determination of Pyrazine and Flavor Variations in Peanut Genotypes During Roasting[J]. JOURNAL OF FOOD SCIENCE, 2003, 68(1):394-400. DOI: 10.1111/j.1365-2621.2003.tb14171.x.[11] Guo X, Song C, Ho CT, et al. Contribution of l-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes[J]. Food Chem, 2018, 263:18-28. DOI: 10.1016/j.foodchem.2018.04.117.[12] Rusconi M, Conti A. Theobroma cacao L., the Food of the Gods: a scientific approach beyond myths and claims[J]. Pharmacol Res, 2010, 61(1):5-13. DOI: 10.1016/j.phrs.2009.08.008.[13] Zhang L, Cao Y, Tong J, et al. An Alkylpyrazine Synthesis Mechanism Involving l-Threonine-3-Dehydrogenase Describes the Production of 2,5-Dimethylpyrazine and 2,3,5-Trimethylpyrazine by Bacillus subtilis[J]. Appl Environ Microbiol, 2019, 85(24). DOI: 10.1128/AEM.01807-19.[14] Fujita KI, Wada T, Shiraishi T. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage[J]. Angew Chem Int Ed Engl, 2017, 56(36):10886-10889. DOI: 10.1002/anie.201705452.[15] Su J, Liu H, Hua R. Au(I)-catalyzed annulation of propargyl amine with aldehydes: one-pot cascade synthesis of 2,5-dimethylpyrazines[J]. Int J Mol Sci, 2015, 16(2):3599-3608. DOI: 10.3390/ijms16023599.[16] 杨强. 基于代谢途径分析的L-苏氨酸合成代谢调控[D] :江南大学,2022.[17] 曹艳丽, 张丽杰, 徐岩. 以L-苏氨酸为发酵底物的2,5-二甲基吡嗪高产菌株构建[J]. 食品与发酵工业, 2020, 46(01):1-10. [18] 张利坤, 肖延铭, 杨卫华, 等. 亮氨酸脱氢酶偶联NADH再生体系合成L-2-氨基丁酸[J]. 生物工程学报, 2020, 36(05):992-1001. [19] 杨晨. 构建重组大肠杆菌高效合成2,5-二甲基吡嗪[D] :江南大学,2021.[20] Adjogatse E, Bennett J, Guo J, et al. The X-ray structure of L-threonine dehydrogenase from the common hospital pathogen Clostridium difficile[J]. Acta Crystallogr F Struct Biol Commun, 2021, 77(Pt 8):269-274. DOI: 10.1107/S2053230X21007135.[21] 张振华, 解玉丽, 王铁军, 等. 甲酸脱氢酶催化活性的定向进化及其高效表达[J]. 应用化学, 2021, 38(06):704-712. [22] 贾园园, 李祥, 张振华, 等. 重组大肠杆菌全细胞催化D,L-扁桃酸对映选择性制备L-苯甘氨酸[J]. 食品科学, 2021, 42(02):83-89. [23] Xu J, Yu H, Chen X, et al. Accelerated Green Process of 2,5-Dimethylpyrazine Production from Glucose by Genetically Modified Escherichia coli[J]. ACS Synth Biol, 2020, 9(9):2576-2587. DOI: 10.1021/acssynbio.0c00329.[24] Ma F, Wang T, Ma X, et al. Identification and characterization of protein encoded by orf382 as L-threonine dehydrogenase[J]. J Microbiol Biotechnol, 2014, 24(6):748-755. DOI: 10.4014/jmb.1312.12030.[25] Nakano S, Okazaki S, Tokiwa H, et al. Binding of NAD+ and L-threonine induces stepwise structural and flexibility changes in Cupriavidus necator L-threonine dehydrogenase[J]. J Biol Chem, 2014, 289(15):10445-10454. DOI: 10.1074/jbc.M113.540773. |