食品科学 ›› 2021, Vol. 42 ›› Issue (3): 179-185.doi: 10.7506/spkx1002-6630-20200214-141

• 营养卫生 • 上一篇    下一篇

海藻酸钠-纳米纤维素胶粒对乳酸菌胃肠液耐受性的影响

陈秉彦,林晓姿,李维新,林晓婕,郑宝东,何志刚   

  1. (1.福建省农业科学院农业工程技术研究所,福建 福州 350002;2.福建省农产品(食品)加工重点实验室,福建 福州 350002;3.福建农林大学食品科学学院,福建 福州 350002)
  • 发布日期:2021-02-25
  • 基金资助:
    福建省农产品(食品)加工重点实验室开放项目(NJG2018001);福建省区域发展项目(2019N3008); 福建省省属公益类科研院所基本科研专项重点项目(2019R1032-6)

Effects of Sodium Alginate-Nanocellulose Beads on the Viability of Lactic Acid Bacteria in Simulated Gastrointestinal Fluid

CHEN Bingyan, LIN Xiaozi, LI Weixin, LIN Xiaojie, ZHENG Baodong, HE Zhigang   

  1. (1. Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; 2. Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350002, China; 3. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
  • Published:2021-02-25

摘要: 为提高海藻酸钠胶粒对乳酸菌在胃肠液中的保护作用,分别利用豆渣纤维素纳米微纤丝与纤维素纳米微晶协同钙离子交联海藻酸钠包埋乳酸菌制备载菌海藻酸钠-纳米纤维素胶粒,并对海藻酸钠-纳米纤维素胶粒进行微观结构观察、傅里叶变换红外光谱分析、低频氢谱核磁共振分析,同时测定载菌海藻酸钠-纳米纤维素胶粒胃肠消化前后的活菌数量,研究海藻酸钠-纳米纤维素胶粒对乳酸菌胃肠液耐受性的影响。结果表明,纳米纤维素可提高海藻酸钠胶粒的包埋率并减少胶粒表面的孔隙结构,纳米微纤丝较纳米微晶能更好地改善海藻酸钠体系的氢键结合能力,促进海藻酸钠分子链与Ca2+间形成盐桥,强化凝胶体系的网络结构,从而提高海藻酸钠胶粒的机械强度。进一步研究发现,海藻酸钠-纳米微纤丝胶粒经胃肠液消化后活菌数下降1.51(lg(CFU/g)),显著低于纳米微晶组(2.16(lg(CFU/g)))以及海藻酸钠组(2.99(lg(CFU/g)))(P<0.05)。综上,纳米微纤丝可作为强化海藻酸钠载体的优良壁材提高乳酸菌的胃肠道耐受性。

关键词: 海藻酸钠;纤维素;纳米微纤丝;纳米微晶;益生菌;模拟胃肠液

Abstract: For improved protective effect of sodium alginate (SA) beads on lactic acid bacteria (LAB) exposed to simulated gastrointestinal fluid (SGF), soybean cellulose nanocrystals (SCNC) or cellulose nanofibrils (SCNF), both of which were prepared from soybean okara, in combination with SA was used to encapsulate LAB with calcium ions as a cross-linker. The microstructure of SA-nanocellulose beads was observed, Fourier transform infrared spectroscopy and low frequency nuclear magnetic resonance were analyzed. The effect of SA-nanocellulose beads on the viability of LAB in SGF was investigated by determining the number of viable bacteria before and after gastrointestinal digestion. Nanocellulose could increase the encapsulation efficiency of SA beads and decrease the surface pores. In addition, SCNF was better than SCNC in improving the hydrogen bonding capacity of SA, promoting the formation of a salt bridge between the SA chain and Ca2+, strengthening the structure of the gel network, and ultimately enhancing the mechanical strength of SA beads. Furthermore, SA-SCNF beads provided better protection of LAB after exposure to SGF with a reduction in viable cell count of 1.51 (lg(CFU/g)), significantly lower than that observed for SA beads (2.99 (lg(CFU/g))) and SA-SCNC beads (2.16 (lg(CFU/g))) (P < 0.05). These results indicated that SCNF can be applied as a nano-carrier for the encapsulation of LAB to keep it stable in the gastrointestinal tract.

Key words: sodium alginate; cellulose; nanofibrils; nanocrystals; probioticd; simulated gastrointestinal fluid

中图分类号: