食品科学 ›› 2024, Vol. 45 ›› Issue (4): 271-278.doi: 10.7506/spkx1002-6630-20230411-098

• 包装贮运 • 上一篇    下一篇

基于梯度降温的草鱼暂养及有水保活运输技术

何静怡,魏涯,岑剑伟,郝淑贤,陈胜军,黄卉,赵永强,王悦齐,杨少玲,林织   

  1. (1.上海海洋大学食品学院,上海 201306;2.中国水产科学研究院南海水产研究所,农业农村部水产品加工重点实验室,广东 广州 510300;3.中国水产科学研究院南海水产研究所热带水产研究开发中心,海南 三亚 572019;4.广东顺欣海洋渔业集团有限公司,广东 阳江 529800)
  • 出版日期:2024-02-25 发布日期:2024-03-11
  • 基金资助:
    国家现代农业产业技术体系资助项目(CARS-46);海南省自然科学基金面上项目(321MS099); 广东省现代农业产业技术体系海水鱼产业创新项目(2019KJ143); 广东省企业科技特派员专项资助项目(GDKTP202135800);广州市科技计划项目(202002030199); 中国水产科学研究院基本科研业务费资助(2020TD73); “扬帆计划”引进创新创业团队专项资助项目(2015YT02H109)

Temporary Cultivation and Live Transport with Water Based on Gradient Cooling of Grass Carp (Ctenopharyngodon idellas)

HE Jingyi, WEI Ya, CEN Jianwei, HAO Shuxian, CHEN Shengjun, HUANG Hui,ZHAO Yongqiang, WANG Yueqi, YANG Shaoling, LIN Zhi   

  1. (1. College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; 2. Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; 3. Tropical Fisheries Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Science, Sanya 572019, China; 4. Guangdong Shunxin Sea Fishery Group Co. Ltd., Yangjiang 529800, China)
  • Online:2024-02-25 Published:2024-03-11

摘要: 以草鱼为研究对象,基于梯度降温探究其半休眠温度及临界温度,研究温度(12~24 ℃)对草鱼存活和水质氨氮质量浓度的影响。分别以1、3、5 ℃/h的降温速率将水温从室温(23~25 ℃)降至半休眠温度(16 ℃)后保活,以室温暂养为对照组,以保活0、12、24、36、48 h作为采样时间点,检测其血清生化指标及抗氧化指标,获得适合草鱼冷驯的最大降温速率。结果表明:草鱼的半休眠温度为16 ℃,临界低温为6~8 ℃,最佳降温速率为3 ℃/h。在16 ℃条件下草鱼应激迟缓、代谢降低,水中氨氮含量较低。除谷草转氨酶水平外,3 ℃/h降温条件下其他血清生化指标的最大值均显著小于1 ℃/h及5 ℃/h降温条件(P<0.05),该降温速率下草鱼的超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶活力随保活时间延长先增加后降低,丙二醛含量呈先降后增趋势,保活36 h达最小值(5.27 mmol/mg);相比对照组,3 个降温处理组的各生化及抗氧化指标随保活时间延长均发生显著变化,因此,以3 ℃/h对草鱼进行冷驯化,其应激更小,进入半休眠状态时间更合适。本研究可为草鱼的暂养和运输流程提供关键参数,从而指导操作和降低运输死亡率。

关键词: 低温休眠;降温速率;应激;生化指标;抗氧化指标

Abstract: The study investigated the semi-hibernation and critical temperature of grass carp based on gradient cooling, and explore the effects of temperature (12–24 ℃) on the survival of grass carp and the concentration of ammonia nitrogen in the water. The temperature was reduced from room temperature (23–25 ℃) to the semi-dormant temperature (16 ℃) at cooling rate of 1, 3, or 5 ℃/h. The control group was reared at room temperature, and sampling was conducted after 0, 12, 24, 36, and 48 h. Serum biochemical and antioxidant parameters were measured to obtain the maximum cooling rate for grass crap. The results showed that the semi-dormant temperature of grass carp was 16 ℃, the critical temperature was 6–8 ℃, and the optimal cooling rate was 3 ℃/h. At 16 ℃, grass carp exhibited delayed stress response and decreased metabolism, and lower concentrations of ammonia nitrogen in the water. Except for aspartate aminotransferase level, the maximum values of other serum biochemical indexes at the cooling rate of 3 ℃/h, were significantly lower than those at 1 and 5 ℃/h (P < 0.05). The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) exhibited a trend of initially increasing and then decreasing with survival time, whereas the content of malondialdehyde (MDA) showed an opposite trend, reaching a minimum value of 5.27 mmol/mg after 36 h. Compared to the control group, the contents of all biochemical and antioxidant indexes in the three cooling groups showed significant changes with survival time. Therefore, cooling grass carp at a rate of 3 ℃/h could reduce the stress response and allowed it to enter a semi-hibernation state at a more suitable time. The results from this study provide key parameters for the temporary cultivation and transport of grass carp, as well as useful guidelines for reducing the transport mortality.

Key words: low-temperature hibernation; cooling rate; stress; biochemical indicators; antioxidant indicators

中图分类号: