食品科学 ›› 2025, Vol. 46 ›› Issue (6): 124-132.doi: 10.7506/spkx1002-6630-20240904-031

• 生物工程 • 上一篇    下一篇

海洋来源纤维素酶CelL7的异源表达、酶学表征及生物膜清除作用

翁晓敏,胡诗琦,蔡佳琪,洪健渠,严芬   

  1. (福州大学生物科学与工程学院,福建 福州 350108)
  • 出版日期:2025-03-25 发布日期:2025-03-10
  • 基金资助:
    中央引导地方科技发展专项(2022L3020)

Heterologous Expression, Enzymatic Characterization, and Biofilm Eradication Activity of Cellulase CelL7 Derived from Marine Sources

WENG Xiaomin, HU Shiqi, CAI Jiaqi, HONG Jianqu, YAN Fen   

  1. (College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China)
  • Online:2025-03-25 Published:2025-03-10

摘要: 从海洋细菌Zobellia sp. B2中克隆新型纤维素酶CelL7基因,同时添加碳水化合物结合模块家族3(carbohydrate-binding module family 3,CBM3)基因构建融合基因CelL7-CBM3,并实现其编码的融合蛋白CelL7-CBM3在大肠杆菌BL21中实现异源表达,利用亲和层析柱获得纯化蛋白。CelL7基因序列全长1 077 bp,编码358 个氨基酸残基,理论蛋白分子质量为40.39 kDa。CelL7和CelL7-CBM3的比酶活力分别为2 249.81 U/mg和2 915.75 U/mg。CelL7与CelL7-CBM3的最适反应温度均为50 ℃,最适pH值分别为5.0和5.5,Mn2+和Fe2+能激活CelL7,Cu2+抑制CelL7的活力,CelL7可降解羧甲基纤维素钠、纤维二糖和木聚糖。以羧甲基纤维素钠为底物时,CelL7-CBM3的米氏常数(Km)为11.70 mg/mL,较CelL7的Km(13.23 mg/mL)有所降低,表明添加结合结构域后的融合酶对羧甲基纤维素钠的亲和力增强;最大反应速率(Vmax)为175.44 mg/(mL·min),催化常数(Kcat)为2.78 s-1,Kcat/Km为0.24 mL/(mg·s),与CelL7相比变化不大。生物膜清除实验表明,10.0~60.0 μg/mL的CelL7和30.0~60.0 μg/mL CelL7-CBM3能够有效分散生物膜,减少生物膜量。

关键词: 纤维素酶;异源表达;结构域融合;生物膜清除

Abstract: In this study, a novel cellulase gene, CelL7, was cloned from the marine bacterium Zobellia sp. B2. Furthermore, a fusion gene, CelL7-CBM3, was constructed by fusing a carbohydrate-binding module family 3 (CBM3) to CelL7 and heterologously expressed in Escherichia coli BL21. The expressed fusion protein was purified by affinity column chromatography. The full length of the CelL7 gene was 1 077 bp, encoding 358 amino acid residues, and the theoretical molecular mass of the encoded protein was 40.39 kDa. The specific enzyme activities of CelL7 and CelL7-CBM3 were 2 249.81 and 2 915.75 U/mg, respectively. The optimal reaction temperatures for both enzymes were 50 ℃, and the optimal pHs were 5.0 and 5.5, respectively. Mn2+ and Fe2+ activated the activity of CelL7, while Cu2+ inhibited it. CelL7 was capable of degrading carboxymethyl cellulose sodium, cellobiose, and xylan. When sodium carboxymethyl cellulose was used as a substrate, the Michaelis-Menten constant (Km) of CelL7-CBM3 was 11.70 mg/mL, which was lower than that of CelL7 (Km = 13.23 mg/mL), indicating that the fusion enzyme, with an added binding domain, exhibited enhanced affinity for carboxymethyl cellulose sodium. The maximum reaction rate (Vmax) was 175.44 mg/(mL·min), the catalytic constant (Kcat) was 2.78 s-1, and the Kcat/Km was 0.24 mL/(mg·s), which were comparable to those of CelL7. Biofilm clearance experiments showed that concentrations of CelL7 ranging from 10.0 to 60.0 μg/mL and those of CelL7-CBM3 ranging from 30.0 to 60.0 μg/mL were effective in dispersing biofilm and reducing the amount of biofilm.

Key words: cellulase; heterologous expression; domain fusion; biofilm eradication

中图分类号: