食品科学 ›› 2025, Vol. 46 ›› Issue (13): 54-48.doi: 10.7506/spkx1002-6630-20241214-115

• 食品化学 • 上一篇    

基于反向传播神经网络分析的田菁胶添加对萨拉米发酵香肠品质的影响

卢慧,宋艾颖,凌峰,蔡玉玲,黄启亮,刘云国,康大成   

  1. (1.临沂大学生命科学学院,山东 临沂 276000;2.临沂新程金锣肉制品集团有限公司,山东 临沂 276036;3.临沂金锣文瑞食品有限公司,山东 临沂 276036)
  • 发布日期:2025-06-13
  • 基金资助:
    国家自然科学基金青年科学基金项目(32001723);山东省高等学校大学生创新创业训练计划项目(X202410452615)

Impact of Sesbania Gum Addition on the Quality of Salami Based on Backpropagation-Artificial Neural Network Analysis

LU Hui, SONG Aiying, LING Feng, CAI Yuling, HUANG Qiliang, LIU Yunguo, KANG Dacheng   

  1. (1. College of Life Sciences, Linyi University, Linyi 276000, China; 2. Linyi Xincheng Jinluo Meat Products Group Co. Ltd., Linyi 276036, China; 3. Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China)
  • Published:2025-06-13

摘要: 旨在探讨基于反向传播神经网络(backpropagation-artificial neural network,BP-ANN)分析田菁胶添加对萨拉米发酵香肠品质的影响。本研究设计4 个处理组:空白对照组(CK)、接种复合发酵剂处理组(CG)、添加田菁胶处理组(SE)和添加田菁胶与接种复合发酵剂处理组(SE-CG)。通过测定发酵香肠的pH值、水分活度(aw)、色差、质构特性、感官评定和电子鼻等指标,系统评估田菁胶添加对萨拉米发酵香肠品质的影响。研究表明,田菁胶与发酵剂共同添加时可快速降低产品pH值和aw值,有利于萨拉米香肠的最终品质的形成;与CK和CG组相比,添加田菁胶可显著改善SE-CG组的a*值(4.64±0.38)和硬度((60.95±1.48)N)。此外,电子鼻分析表明,田菁胶结合发酵剂可显著增加产品中含硫化合物、醇类以及芳香族化合物的浓度。BP-ANN模型被用于对香肠品质进行分类和预测,结果显示模型的准确率达到96%,具有较高的分类精度和预测能力。此外,通过沙普利加和解释方法用于BP-ANN模型解释,揭示了不同品质指标对模型预测的重要性,发现其中电子鼻传感器S12信号、硬度和咀嚼性等特征对模型预测贡献较大。

关键词: 萨拉米发酵香肠;田菁胶;反向传播神经网络;品质分析;沙普利加和解释方法

Abstract: This study explored the impact of adding sesbania gum on the quality of salami using backpropagation-artificial neural network (BP-ANN) analysis. Four treatment groups were designed: blank control (CK), inoculation of a mixed culture (CG), addition of sesbania gum (SE), and sesbania gum addition combined with mixed culture inoculation (SE-CG). The quality of salami was evaluated in terms of its pH, water activity (aw), color difference, texture, sensory evaluation, and electronic nose analysis. It was demonstrated that the combined treatment rapidly decreased the pH and aw of the product, thereby contributing to the formation of the final quality of salami. Compared with the CK and CG groups, the SE-CG group exhibited significantly improved a* value (4.64 ± 0.38) and hardness ((60.95 ± 1.48) N). Furthermore, the electronic nose analysis revealed that the SE-CG treatment significantly increased the contents of sulfur-containing compounds, alcohols, and aromatic compounds in the product. The developed BP-ANN model had good classification accuracy and predictive ability with a 96% accuracy. Additionally, the Shapley additive explanations (SHAP) method was employed to interpret the BP-ANN model, highlighting the significance of various quality indicators in the prediction. Notably, the signal of electronic nose sensor S12, hardness, and chewiness were identified as the most important features for the model prediction.

Key words: salami; sesbania gum; backpropagation artificial neural networks; quality analysis; Shapley additive explanations method

中图分类号: