食品科学 ›› 2025, Vol. 46 ›› Issue (13): 115-99.doi: 10.7506/spkx1002-6630-20241222-183

• 生物工程 • 上一篇    

短促生乳杆菌PL6-1全基因组分析及其安全性和抗氧化性评价

李娅馨,谷云静,程伟烨,王璇,张清扬,贡汉生,蒋黎黎,刘文丽,刘小平,李华敏   

  1. (1.鲁东大学食品工程学院,烟台市预制食品纳米科学与技术重点实验室,烟台市食品绿色加工与质量控制工程研究中心,山东 烟台 264025;2.烟台鼎丰生物科技有限公司,山东 烟台 265403;3.国科大杭州高等研究院生命与健康科学学院,浙江 杭州 310024)
  • 发布日期:2025-06-13
  • 基金资助:
    烟台市科技计划项目(2023ZDCX028;2022XDRH013)

Whole Genome Analysis of Levilactobacillus brevis PL6-1 and Assessment of Its Safety and Antioxidant Activity

LI Yaxin, GU Yunjing, CHENG Weiye, WANG Xuan, ZHANG Qingyang, GONG Hansheng, JIANG Lili, LIU Wenli, LIU Xiaoping, LI Huamin   

  1. (1. Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, School of Food Engineering, Ludong University, Yantai 264025, China; 2. Yantai T.Full Biotech Co. Ltd., Yantai 265403, China; 3. School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China)
  • Published:2025-06-13

摘要: 利用二代NovaSeq X Plus和三代PacBio Revio测序平台对分离自中国传统发酵蔬菜的短促生乳杆菌(Levilactobacillus brevis)PL6-1进行全基因组测序,并依托京都基因与基因组百科全书数据库,重建L. brevis PL6-1的碳水化合物代谢途径,同时分析该菌种的安全性及不同碳源对其抗氧化活性的影响。结果表明,L. brevis PL6-1基因组大小为2 632 919 bp,有2 618 个编码基因在非冗余蛋白质数据库被注释。基因组中富含糖基水解酶家族酶基因,但未发现耐药基因和毒力基因。表型实验结果表明,L. brevis PL6-1无溶血现象,对卡那霉素、庆大霉素和万古霉素耐药。在碳源利用方面,L. brevis PL6-1能够利用L-阿拉伯糖、核糖、D-木糖、半乳糖、葡萄糖、果糖、水杨苷、麦芽糖和海藻糖。其中,麦芽糖可快速启动L. brevis PL6-1的增殖;而以海藻糖和葡萄糖为主要碳源培养时,L. brevis PL6-1表现出更高的1,1-二苯基-2-三硝基苯肼自由基清除率;以核糖为主要碳源培养时2,2′-联氮-双(3-乙基苯并噻唑啉-6-磺酸)阳离子自由基清除能力最高。本研究通过全基因组分析和代谢途径重建,深入解析了L. brevis PL6-1的遗传信息特征和代谢特性,为其在食品工业中的安全应用提供了重要的理论依据,同时为该菌株的益生功能开发与利用奠定了科学基础。

关键词: 短促生乳杆菌;全基因组;安全性评价;抗氧化性

Abstract: This study utilized the second-generation NovaSeq X Plus and third-generation PacBio Revio sequencing platforms for the whole-genome sequencing of Levilactobacillus brevis PL6-1, isolated from traditional fermented vegetables in China. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the carbohydrate metabolic pathways of L. brevis PL6-1 were reconstructed, and the safety of this strain was assessed. Additionally, the effects of different carbon sources on its antioxidant activity were analyzed. The results showed that the genome size of L. brevis PL6-1 was 2 632 919 bp, with 2 618 coding genes being annotated in the Non-Redundant Protein Database. The genome was rich in genes encoding enzymes of the glycoside hydrolase (GH) family, but neither antibiotic resistance nor virulence genes were found. Phenotypic analysis revealed that L. brevis PL6-1 exhibited no hemolytic activity and demonstrated resistance to kanamycin, gentamicin, and vancomycin. In addition, L. brevis PL6-1 was able to utilize L-arabinose, ribose, D-xylose, galactose, glucose, fructose, salicin, maltose and trehalose. Maltose rapidly initiated the proliferation of L. brevis PL6-1. Furthermore, when cultured with trehalose or glucose as the primary carbon source, L. brevis PL6-1 demonstrated enhanced 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, while culture with ribose as the primary carbon source increased the 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation radical scavenging capacity. The findings from this study provide a significant theoretical basis for the safe application of this strain in the food industry while establishing a scientific foundation for the development and utilization of its probiotic functions.

Key words: Levilactobacillus brevis; whole genome; safety evaluation; antioxidant activity

中图分类号: