食品科学 ›› 2025, Vol. 46 ›› Issue (22): 101-111.doi: 10.7506/spkx1002-6630-20250412-100

• 果蔬加工与营养健康专栏 • 上一篇    下一篇

膳食果糖的代谢特征及其致病机制的研究进展

蒋起宏,陈进宇,沈国新,陈琳   

  1. (1.浙江省农业科学院蚕桑与茶叶研究所,浙江?杭州 310021;2.华南理工大学食品科学与工程学院,广东?广州 510640;3.浙工大生态工业创新研究院,浙江?衢州 324400)
  • 发布日期:2025-11-21
  • 基金资助:
    浙江省蚕桑新品种选育重大科技专项(2021C02072-5-1);中医药现代化专项(2021ZX002)

Recent Advances in Understanding the Metabolic Characteristics and Pathogenic Mechanism of Dietary Fructose

Jiang Qihong, CHEN Jinyu, SHEN Guoxin, Chen Lin   

  1. (1. Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 2. School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; 3. Eco-industrial Innovation Institute ZJUT, Quzhou 324400, China)
  • Published:2025-11-21

摘要: 果糖因其高甜度、低成本被广泛用作甜味剂,是加工食品及含糖饮料的核心成分。然而,过量摄入果糖已被证实与肥胖、糖尿病、高血压、癌症等多种代谢性疾病的发生发展密切相关,甚至会显著增加死亡风险。果糖在体内呈现剂量依赖性双路径代谢模式:低剂量果糖主要由小肠上皮细胞顶膜侧的葡萄糖转运蛋白5转运,经酮己糖激酶C催化首过代谢为果糖-1-磷酸,从而大幅减轻进入全身循环的果糖负荷。当摄入超载时,果糖突破肠道代谢阈值发生“溢出”,未经代谢的果糖经门静脉进入肝脏,显著激活新生脂肪生成通路,通过上调固醇调节元件结合蛋白-1c及碳水化合物反应元件结合蛋白表达从而促进脂质合成,最终诱发肝内及全身脂质沉积、肥胖和非酒精性脂肪肝,并伴随胰岛素抵抗的发生。机制研究表明,高果糖饮食可重塑肠道菌群结构,导致拟杆菌门和变形菌门微生物的丰度上升,同时伴随紧密连接蛋白(Occludin、Claudin-1、ZO-1)表达显著下调,破坏肠黏膜屏障功能,促使脂多糖易位,并激活Toll样受体4介导的全身低度慢性炎症反应。高果糖摄入还可增加嘌呤代谢中间产物产量,通过促进尿酸合成损伤血管内皮功能,进而加剧高尿酸血症的发生与发展。本综述详细描述了果糖的代谢吸收机制及其在代谢性疾病中的作用机制,旨在为开发靶向干预策略提供理论依据和新思路。

关键词: 果糖代谢;脂肪生成;肠道菌群失调

Abstract: Fructose, valued for its intense sweetness and low cost, is widely used as a sweetener and serves as a key component in processed foods and sugar-sweetened beverages. However, excessive fructose intake has been confirmed to be closely associated with the occurrence and progression of various metabolic diseases, such as obesity, diabetes, hypertension, and cancer, and even significantly increases the risk of mortality. Recent studies reveal a ‌dose-dependent dual-pathway mechanism‌ in fructose metabolism. At low doses, fructose is primarily transported via intestinal glucose transporter 5 (GLUT5) located on the apical membrane of intestinal epithelial cells and undergoes first-pass metabolism catalyzed by ketohexokinase-C (KHK-C) into fructose-1-phosphate (F1P), thereby greatly reducing the fructose load entering the systemic circulation. When its intake exceeds the threshold, fructose “spills over” and unmetabolized fructose enters the liver via the portal vein, significantly activating the de novo lipogenesis (DNL) pathway. This process upregulates sterol-regulatory element binding protein-1c (SREBP-1c) and carbohydrate responsive element binding protein (ChREBP), enhancing lipid synthesis and ultimately inducing hepatic and systemic lipid accumulation, obesity, and non-alcoholic fatty liver disease (NAFLD), accompanied by insulin resistance. Mechanistic studies have shown that a high-fructose diet can reshape the composition of the gut microbiota, increasing the abundance of Bacteroidetes and Proteobacteria, while significantly down-regulating the expression of tight junction proteins (occludin, claudin-1, and ZO-1), thereby compromising the intestinal mucosal barrier. This facilitates the translocation of lipopolysaccharide (LPS) and activates Toll-like receptor 4 (TLR4)-mediated systemic low-grade chronic inflammatory responses. Moreover, high fructose intake can increase the production of intermediates in purine metabolism, enhancing uric acid synthesis and impairing vascular endothelial function, thereby exacerbating the onset and progression of hyperuricemia. This review comprehensively delineates the mechanisms of fructose absorption and metabolism and its pathogenic role in metabolic disorders, aiming to offer novel theoretical insights and strategies for targeted interventions.

Key words: fructose metabolism; lipogenesis; gut dysbiosis

中图分类号: