食品科学 ›› 2024, Vol. 45 ›› Issue (3): 317-325.doi: 10.7506/spkx1002-6630-20230207-068

• 专题论述 • 上一篇    下一篇

酿酒酵母耐受机制研究进展

张乐,崔金娜,刘伟,朱明达,刘占英   

  1. (1.内蒙古自治区发酵产业节能减排工程技术研究中心,内蒙古 呼和浩特 010051;2.生物发酵绿色制造内蒙古自治区工程研究中心,内蒙古 呼和浩特 010051;3.内蒙古工业大学化工学院,内蒙古 呼和浩特 010051)
  • 出版日期:2024-02-15 发布日期:2024-03-06
  • 基金资助:
    内蒙古自治区科技重大专项(2019ZD021)

Research Progress on Tolerance Mechanism of Saccharomyces cerevisiae

ZHANG Le, CUI Jinna, LIU Wei, ZHU Mingda, LIU Zhanying   

  1. (1. Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Hohhot 010051, China; 2. Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot 010051, China; 3. College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)
  • Online:2024-02-15 Published:2024-03-06

摘要: 酿酒酵母在工业生产中被广泛应用,却会受到多种应激源和抑制物的限制,因此,探究酿酒酵母应对环境中各种不利因素的耐受机制,进而利用遗传改造技术等多种育种手段提高其耐受能力,对于提高酿酒酵母在工业生产中的鲁棒性和发酵能力至关重要。本文综述了酿酒酵母对渗透压、乙醇、高温、有机酸、活性氧、二氧化硫等的耐受机制,分析了酿酒酵母中与环境胁迫有关的耐受基因,并总结了耐受机制的研究方向,未来可通过系统生物学和基因工程技术深入研究菌种适应环境的分子机制和功能网络,为提高酿酒酵母在工业生产中的抗逆性和发酵能力提供理论和实践指导。

关键词: 酿酒酵母;渗透压;乙醇;高温;有机酸;氧化应激;二氧化硫

Abstract: Saccharomyces cerevisiae has been applied widely in industrial production; however, a variety of stressors and inhibitors limit its application. Therefore, exploring the tolerance mechanism of S. cerevisiae to various environmental adverse factors and improving its tolerance by various methods such as genetic modification are crucial for improving the robustness and fermentation ability of S. cerevisiae in industrial production. This article reviews the tolerance mechanism of S. cerevisiae to osmotic pressure, ethanol, high temperature, organic acid, reactive oxygen species (ROS) and sulfur dioxide, analyzes tolerance genes related to environmental stress in S. cerevisiae and summarizes the current directions in research on the tolerance mechanism of S. cerevisiae. In the future, the molecular mechanism and functional network of strain adaptation to the environment will be studied by systems biology and genetic engineering technology, which will provide theoretical and practical guidance for improving the stress resistance and fermentation ability of S. cerevisiae in industrial production.

Key words: Saccharomyces cerevisiae; osmotic pressure; ethanol; high temperature; organic acid; oxidative stress; sulfur dioxide

中图分类号: