食品科学 ›› 2024, Vol. 45 ›› Issue (7): 202-210.doi: 10.7506/spkx1002-6630-20230801-006

• 食品工程 • 上一篇    下一篇

水力空化处理对大豆分离蛋白与儿茶素相互作用及结构功能特性的影响

谢欢欢,任仙娥,宋杨凤,杨锋   

  1. (广西科技大学生物与化学工程学院,广西糖资源绿色加工重点实验室,广西高校糖资源加工重点实验室,广西柳州螺蛳粉工程技术研究中心,广西 柳州 545006)
  • 出版日期:2024-04-15 发布日期:2024-04-23
  • 基金资助:
    国家自然科学基金地区科学基金项目(32360577);广西自然科学基金面上项目(2023JJA130157)

Effect of Hydrodynamic Cavitation Treatment on the Interaction between Soy Protein Isolate (SPI) and Catechin and Structure and Functional Properties of SPI-Catechin Conjugates

XIE Huanhuan, REN Xian’e, SONG Yangfeng, YANG Feng   

  1. (Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi Liuzhou Luosifen Research Center of Engineering Technology, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China)
  • Online:2024-04-15 Published:2024-04-23

摘要: 采用基于孔板的水力空化对儿茶素与大豆分离蛋白(soy protein isolate,SPI)的混合物进行处理,通过比较处理前后儿茶素与SPI的结合量,以及所形成复合物的紫外吸收光谱、荧光光谱、游离巯基与游离氨基含量、表面疏水性、平均粒径与Zeta电位、二级结构、抗氧化活性等的变化,研究水力空化处理对儿茶素与SPI相互作用及所形成复合物的结构功能特性的影响。结果表明:水力空化处理能促进儿茶素与SPI的相互作用,在儿茶素添加量为2.0 mg/mL时,水力空化处理能将儿茶素与SPI的结合量由(21.82±0.18)mg/g提高至(62.55±0.36)mg/g;与未处理的复合物相比,水力空化处理后SPI-儿茶素复合物的紫外吸收增强,荧光强度减弱,平均粒径增大,Zeta电位绝对值、表面疏水性、游离巯基和游离氨基含量下降,二级结构中α-螺旋、β-转角和无规卷曲相对含量增加,β-折叠相对含量减小;另外,经水力空化处理后复合物的抗氧化活性明显增强,在儿茶素添加量为2.0 mg/mL时,1,1-二苯基-2-三硝基苯肼自由基清除率由处理前的(48.64±1.24)%上升至(84.72±0.12)%,2,2′-联氮-双(3-乙基苯并噻唑啉-6-磺酸)阳离子自由基清除率由(35.60±1.21)%上升至(75.51±0.79)%,铁离子还原能力由0.81±0.02上升至1.52±0.05。可见,水力空化处理能够促进儿茶素与SPI的结合,改变复合物的结构性质,增强复合物的抗氧化活性。

关键词: 水力空化;大豆分离蛋白;儿茶素;相互作用;抗氧化活性

Abstract: In this study, to understand the effect of hydrodynamic cavitation (HC) treatment on the interaction between catechin and soy protein isolate (SPI) and the structural and functional properties of the conjugates, we explored the changes in binding between catechin and SPI as well as the ultraviolet (UV) absorption and fluorescence spectra, free sulfhydryl and amino group contents, surface hydrophobicity, average particle size, zeta potential, secondary structure, and antioxidant properties of the formed conjugates before and after HC treatment. The results showed that HC treatment could promote the interaction between catechin and SPI. At 2.0 mg/mL catechin concentration, HC treatment could increase the amount of catechin bound to SPI from (21.82 ± 0.18) to (62.55 ± 0.36) mg/g. Compared with the untreated sample, HC treatment enhanced the UV absorption intensity, weakened the fluorescence intensity, increased the average particle size, decreased the absolute value of the zeta potential and surface hydrophobicity, and reduced the free sulfhydryl and amino group contents. Additionally, HC treatment caused an increase in α-helix, β-turn, and random coil relative contents and a decrease in β-sheet relative content. Furthermore, after HC treatment, the antioxidant activity of the catechin-SPI conjugates was significantly enhanced. For the conjugate formed at 2.0 mg/mL catechin concentration, the 1,1-diphenyl-2-picrylhydrayl (DPPH) free radical scavenging capacity increased from (48.64 ± 1.24)% to (84.72 ± 0.12)%, the 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical scavenging capacity from (35.60 ± 1.21)% to (75.51 ± 0.79)%, and the ferric reducing power from 0.81 ± 0.02 to 1.52 ± 0.05. It can be seen that HC treatment can promote the combination of catechin and SPI, change the structural properties of the resulting conjugates, and enhance its antioxidant activity.

Key words: hydrodynamic cavitation; soy protein isolate; catechin; interaction; antioxidant activity

中图分类号: