食品科学 ›› 2025, Vol. 46 ›› Issue (8): 16-24.doi: 10.7506/spkx1002-6630-20241009-033

• 基础研究 • 上一篇    下一篇

高能流体磨增溶大豆蛋白的作用机制

朱启铭,陈军,陈巧云,戴涛涛,邓利珍,王乙惠,张文慧,李俶   

  1. (1.南昌大学 食品科学与资源挖掘全国重点实验室,江西?南昌 330047;2.江西南大国创院食品科技有限公司,江西?南昌 330200;3.江西省药品检查员中心,江西?南昌 330000)
  • 出版日期:2025-04-25 发布日期:2025-04-09
  • 基金资助:
    国家自然科学基金面上项目(32372379)

Mechanism of Solubility Enhancement of Soybean Protein by High-Energy Fluidic Microfluidizer

ZHU Qiming, CHEN Jun, CHEN Qiaoyun, DAI Taotao, DENG Lizhen, WANG Yihui, ZHANG Wenhui, LI Ti   

  1. (1. National Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; 2. Jiangxi Provincial International Institute of Food Innovation Co. Ltd., Nanchang University, Nanchang 330200, China; 3. Jiangxi Provincial Drug Inspection Center, Nanchang 330000, China)
  • Online:2025-04-25 Published:2025-04-09

摘要: 为探究植物蛋白经高能流体磨处理后的改性效果,明晰其增溶机制。采用大豆蛋白为原料,配制质量分数为5%的大豆蛋白悬浮液,使用高能流体磨在不同压力(30、60、90、120 MPa)条件下对其进行处理,制备改性大豆蛋白。采用溶解度、粒径、荧光光谱、圆二色光谱、电泳等手段表征高能流体磨处理过程中大豆蛋白理化性质和结构的变化。结果表明,经高能流体磨处理后的大豆蛋白,其溶解度随着压力增大而显著提升,当处理压力为120 MPa时,溶解度可以达到76.97%。微观结构和蛋白尺寸的变化表明高能流体磨促使大豆蛋白中的大团聚体发生了解聚,随着处理压力从0 MPa增加到120 MPa,颗粒粒径(D[4,3])从94.90 μm降低至3.65 μm,大豆蛋白电位绝对值从18.40 mV增加到28.03 mV、表面疏水性由1 559.60增大至7 199.28、游离巯基含量由18.87 μmol/g上升至22.18 μmol/g,二级结构由β-折叠向α-螺旋转变。研究表明高能流体磨技术能够有效修饰大豆蛋白的结构,极大地提高大豆蛋白溶解性,为植物蛋白工业化增溶改性提供理论支撑。

关键词: 高能流体磨;大豆蛋白;增溶机制;结构

Abstract: In order to investigate the modification effect of high-energy fluidic microfluidizer (HEFM) treatment on plant protein after and clarify its solubilization mechanism, a 5% (m/m) aqueous suspension of soybean protein was treated using a HEFM under different pressures (30, 60, 90 and 120 MPa), obtaining modified soybean protein. The physicochemical and structural changes of soybean protein after the treatment were characterized by solubility measurement, particle size analysis, fluorescence spectroscopy, circular dichroism spectroscopy and electrophoresis. The results showed that the solubility of treated soybean protein increased significantly with increasing pressure, reaching 76.97% at 120 MPa. Changes in microstructure and protein size showed that HEFM promoted the disintegration of large aggregates of soybean protein. As the pressure increased from 0 to 120 MPa, the particle size D[4,3] decreased from 94.90 to 3.65 μm, the absolute value of the zeta potential increased from 18.40 to 28.03 mV, the surface hydrophobicity increased from 1 559.60 to 7 199.28, the content of free sulfhydryl increased from 18.87 to 22.18 μmol/g, and the secondary structure shifted from β-sheet to α-helix. This study showed that HEFM technology can effectively modify the structure of soybean protein leading to improved solubility, which provides theoretical support for the industrial solubility modification of plant protein.

Key words: high-energy fluidic microfluidizer; soybean protein; solubilization mechanism; structure

中图分类号: