食品科学 ›› 2021, Vol. 42 ›› Issue (4): 240-246.doi: 10.7506/spkx1002-6630-20200214-140

• 成分分析 • 上一篇    下一篇

高效液相色谱法分析中国人参不同部位中多酚类化合物

徐艳阳,赵玉娟,高峰,王二雷,鲁海玲,李雪凤,姜雯雯,陈艳   

  1. (1.吉林大学食品科学与工程学院,吉林?长春 130062;2.珲春华瑞参业生物工程股份有限公司,吉林?珲春 133000)
  • 出版日期:2021-02-25 发布日期:2021-02-25
  • 基金资助:
    吉林省科技发展计划项目(20200402064NC;20200708055YY)

Analysis of Polyphenol Compounds in Different Parts of Ginseng (Panax ginseng C.A. Meyer) Produced in China by HPLC

XU Yanyang, ZHAO Yujuan, GAO Feng, WANG Erlei, LU Hailing, LI Xuefeng, JIANG Wenwen, CHEN Yan   

  1. (1. College of Food Science and Engineering, Jilin University, Changchun 130062, China;2. Hunchun Huarui Shenye Bioengineering Co. Ltd., Hunchun 133000, China)
  • Online:2021-02-25 Published:2021-02-25

摘要: 目的:建立一种同时测定中国人参不同部位中18 种多酚类化合物含量的分析方法,明确多酚类化合物在中国人参不同部位中的分布和含量,为吉林长白山人参资源的深度开发和综合利用提供一定依据。方法:利用高效液相色谱技术,分别对红参根、生晒参根、人参茎、人参叶、人参花和人参须中原儿茶酸、龙胆酸、对羟基苯甲酸、丁香酸、绿原酸、对香豆酸、阿魏酸、间香豆酸、邻香豆酸、肉桂酸、柚皮苷、儿茶素、柚皮素、芒柄花黄素、麦芽酚、橙皮素、甲基香兰素、白藜芦醇18 种多酚化合物和总多酚的含量进行测定分析。结果表明:色谱条件为Symmetry?C18色谱柱(4.6 mm×150 mm,5 μm),流动相为0.1%磷酸(A)和乙腈(B),检测波长为230 nm,在此条件下人参样品中18 种多酚化合物可在35 min内得到较好分离,且重复性好(相对标准偏差(relative standard deviation,RSD)≤3.49%)、精密度高(RSD≤3.02%)、稳定性好(RSD≤2.58%)、加标回收结果准确可靠(平均回收率84%~99%,RSD≤5%)。18 种多酚化合物在人参不同部位中的含量差异较大(P<0.05),但均呈现出麦芽酚和儿茶素的含量较高。人参不同部位中总多酚含量差异较大(P<0.05),红参根、生晒参根、人参茎、人参叶、人参花、人参须中的总多酚含量分别为(69.47±3.25)、(95.04±5.03)、(175.19±3.26)、(256.91±2.81)、(174.40±6.26)、(99.31±2.90) mg/100 g。其中人参叶中的总多酚含量最高(P<0.05),红参根中总多酚含量最低。结论:该方法操作简单、高效、准确、可靠,可用于人参多酚的质量控制。

关键词: 中国人参;多酚类化合物;总多酚;高效液相色谱

Abstract: Objective: To establish a high performance liquid chromatography (HPLC) method for the simultaneous determination of 18 polyphenol compounds (protocatechuic acid, gentisic acid, p-hydroxybenzoic acid, syringic acid, chlorogenic acid p-coumaric acid, ferulic acid, m-coumaric acid, o-coumaric acid, t-cinnamic acid, naringin, catechin, naringenin, formononetin, maltol, hesperetin, vanillin, and resveratrol) in different parts of ginseng produced in China. Methods: The contents of total phenolic and individual compounds in Radix Ginseng rubra (red ginseng), dried ginseng, ginseng stems, leaves, flowers and tassels were determined. The chromatographic separation was achieved on a Symmetry?C18 column (4.6 mm × 150 mm, 5 μm) using a mobile phase consisting of 0.1% phosphoric acid (A) and acetonitrile (B), and the detection wavelength was set as 230 nm. Results: The 18 phenolic compounds were separated within 35 min, with good repeatability (relative standard deviation (RSD) ≤ 3.49%), high precision (RSD ≤ 3.02%), good stability (RSD ≤ 2.58%) and reliable recovery (average recoveries ranging from 84% to 99%, RSD ≤ 5%). Significant differences in the contents of total phenolic and individual compounds were found among different parts of ginseng (P < 0.05), and the contents of maltol and catechin were high in all samples. The contents of total polyphenols in red ginseng, dried ginseng, ginseng stems, leaves, flowers and tassels were (69.47 ± 3.25), (95.04 ± 5.03), (175.19 ± 3.26), (256.91 ± 2.81), (174.40 ± 6.26), and (99.31 ± 2.90) mg/100 g, respectively. Conclusion: The method is simple, efficient, accurate and reliable, and can be used for quality control of polyphenols in ginseng.

Key words: Chinese ginseng; polyphenol compounds; total polyphenols; high performance liquid chromatography

中图分类号: