食品科学 ›› 2022, Vol. 43 ›› Issue (4): 95-104.doi: 10.7506/spkx1002-6630-20210331-390

• 生物工程 • 上一篇    下一篇

基于非靶向代谢组学分析酿酒酵母甲酸胁迫的响应和耐受性机制

曾令杰,丰丕雪,黄锦翔,梁大呈,佀再勇,龙秀锋,伍时华,易弋   

  1. (广西科技大学生物与化学工程学院,广西糖资源绿色加工重点实验室,广西 柳州 545006)
  • 出版日期:2022-02-25 发布日期:2022-03-08
  • 基金资助:
    国家自然科学基金地区科学基金项目(31660250);广西自然科学基金项目(2018GXNSFAA050116)

Non-targeted Metabolomic Analysis of Response and Tolerance Mechanism of Saccharomyces cerevisiae to Formic Acid Stress

ZENG Lingjie, FENG Pixue, HUANG Jinxiang, LIANG Dacheng, SI Zaiyong, LONG Xiufeng, WU Shihua, YI Yi   

  1. (Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China)
  • Online:2022-02-25 Published:2022-03-08

摘要: 采用液相色谱-质谱联用(liquid chromatography-mass spectrometry,LC-MC)的非靶向代谢组学,探究酿酒酵母(Saccharomyces cerevisiae)响应甲酸胁迫的代谢机制。主成分分析和正交偏最小二乘判别分析等多元统计结果表明,甲酸处理后酿酒酵母中发生显著变化(P<0.05)、变量投影重要性值超过1的差异代谢物共226 种,主要为L-色氨酸、L-谷氨酰胺、5-羟基吲哚乙酸、吲哚乙醛、L-苯丙氨酸、L-谷氨酸、氧化型谷胱甘肽、5’-磷酸核糖基-N-甲酰甘氨酰胺。差异代谢通路分析表明,甲酸胁迫可能导致酵母细胞内活性氧积累诱导氧化应激、ATP过度消耗,这可能是抑制酵母细胞生长的主要原因。而胞内芳香族氨基酸的含量增加,部分氨基酸和核苷酸的合成代谢减慢可能是通过降低能量消耗而实现的自我保护,从而有助于提高酵母细胞对甲酸的耐受性。实验为进一步研究提高细胞酸类抑制物的耐受性方法提供了科学理论参考。

关键词: 酿酒酵母;甲酸胁迫;非靶向代谢组学

Abstract: The metabolic mechanism of Saccharomyces cerevisiae in response to formic acid stress was studied by non-targeted metabolomics based on liquid chromatography-mass spectrometry (LC-MS) in this work. The data were analyzed by multivariable statistical methods such as principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA). Totally 226 significantly differential metabolites (P < 0.05) with a variable importance in the projection (VIP) value greater than 1 were identified in Saccharomyces cerevisiae under formic acid stress, mainly including L-tryptophan, L-glutamine, 5-hydroxyindoleacetic acid, indoleacetaldehyde, L-phenylalanine, L-glutamate, oxidized glutathione, and 5’-phosphoribosyl-N-formylglycinamide. The analysis of differential metabolic pathways showed that formic acid stress may cause reactive oxygen species (ROS) accumulation, inducing oxidative stress and excessive ATP consumption, and ultimately inhibiting yeast cell growth. In addition, by increasing the contents of intracellular aromatic amino acids and slowing down the rate of anabolism of some amino acids and nucleotides to reduce energy consumption, yeast cells could protect themselves, thus contributing to the improvement of their tolerance to formic acid. This study provides a scientific theoretical reference for further research on methods to improve cellular tolerance to acid inhibitors.

Key words: Saccharomyces cerevisiae; formic acid stress; non-targeted metabolomics

中图分类号: