食品科学 ›› 2023, Vol. 44 ›› Issue (12): 50-59.doi: 10.7506/spkx1002-6630-20220509-103

• 食品化学 • 上一篇    下一篇

静电溶吹制备明胶/玉米醇溶蛋白/百里香酚纳米纤维及其表征

刘松奇,向慧,吴京京,买尔哈巴·塔西帕拉提,安建辉,周志,邓伶俐   

  1. (1.生物资源保护与利用湖北省重点实验室(湖北民族大学),湖北 恩施 445000;2.湖北民族大学生物与食品工程学院,湖北 恩施 445000;3.吐鲁番职业技术学院,新疆 吐鲁番 838000)
  • 出版日期:2023-06-25 发布日期:2023-06-30
  • 基金资助:
    国家自然科学基金地区科学基金项目(32160610);新疆维吾尔自治区自然科学基金项目(2020D01B08); 生物保护与利用湖北省重点实验室开放基金项目(PT012002);湖北民族大学博士启动基金项目(MD2020B008)

Fabrication and Characterization of Gelatin/Zein/Thymol Nanofibers by Electro-blown Spinning

LIU Songqi, XIANG Hui, WU Jingjing, Maierhaba·TAXIPALATI, AN Jianhui, ZHOU Zhi, DENG Lingli   

  1. (1. Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi 445000, China; 2. College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; 3. Turpan Vocational and Technical College, Turpan 838000, China)
  • Online:2023-06-25 Published:2023-06-30

摘要: 利用静电溶吹技术制备明胶/玉米醇溶蛋白/百里香酚纳米纤维。利用扫描电镜分析纳米纤维的微观形貌与直径分布。通过傅里叶红外光谱、X射线衍射、热分析技术分析蛋白与百里香酚之间相互作用,从而解析纳米纤维机械性能、水蒸气透过率等宏观性质和抑菌抗氧化活性的变化。相比于传统静电纺丝技术,静电溶吹技术将纳米纤维的产率提升至传统方式的10.0 倍,给料速率从传统的1.0 mL/h提升至10.0 mL/h。负载0%、0.1%、0.5%、1.0%百里香酚的明胶/玉米醇溶蛋白纳米纤维直径随着百里香酚负载量的增加,纤维直径变化呈上升趋势。红外光谱分析表明百里香酚与蛋白通过氢键相互作用,X射线衍射图谱未发现百里香酚的衍射特征峰,说明百里香酚均匀地分布在纳米纤维中。负载0.5%百里香酚的纳米纤维水蒸气透过率显著低于未负载的纳米纤维,说明负载疏水性的百里香酚会抑制水分子透过纳米纤维膜。拉伸测试表明百里香酚的添加对纳米纤维的杨氏模量有显著增加,但是对其拉伸强度和断裂伸长率无显著影响。通过自由基清除法和金属离子还原法评估其抗氧化能力,发现其抗氧化效果与百里香酚的负载量具有量效关系。通过抑菌圈法分析纳米纤维对大肠杆菌和金黄色葡萄球菌的抑制活性,负载百里香酚的明胶/玉米醇溶蛋白纳米纤维具有有效的抑菌能力。

关键词: 静电溶吹;百里香酚;纳米纤维

Abstract: In this study, gelatin/zein/thymol nanofibers were fabricated by electro-blown spinning technique, and its microscopic morphology and diameter distribution were characterized by scanning electron microscopy (SEM). The interaction between protein and thymol was studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and thermal analysis techniques in order to elucidate the changes in macroscopic performance such as mechanical properties and water vapor permeability (WVP) as well as antioxidant activity and antimicrobial property. Compared with traditional electrospinning, the yield of nanofibers was increased by 10.0 times using electro-blown spinning, and the feeding rate was increased from 1.0 to 10.0 mL/h. The diameter of gelatin/zein/thymol nanofibers showed an upward trend with increasing thymol loading (0%, 0.1%, 0.5%, and 1.0%). FTIR spectroscopy showed that thymol interacted with protein through hydrogen bonding, and no characteristic diffraction peak for thymol was observed in the XRD profile, indicating that thymol was uniformly distributed in the nanofibers. Nanofibers encapsulated with 0.5% thymol showed better WVP than thymol-free nanofibers, indicating that due to its hydrophobicity, thymol could prevent water molecules from passing through the nanofibers. Tensile tests showed that the addition of thymol significantly increased the elastic modulus of the nanofibers, but had no significant effect on the tensile strength or elongation at break. The antioxidant capacity of the nanofibers, as determined by radical scavenging and metal ion reducing assay, was correlated with the concentration of thymol. The nanofibers had potent antimicrobial effect against Escherichia coli and Staphylococcus aureus as evaluated by the zone of inhibition method.

Key words: electro-blown spinning; thymol; nanofibers

中图分类号: