食品科学 ›› 2025, Vol. 46 ›› Issue (14): 366-356.doi: 10.7506/spkx1002-6630-20241130-213

• 专题论述 • 上一篇    

基于机器学习的抑菌活性物质筛选研究进展

侯江霞,姜金辉,王琛鑫,汪兰,石柳,吴文锦,郭晓嘉,陈胜,陈朗,曹锋,孙丽,周志   

  1. (1.湖北民族大学生物与食品工程学院,湖北?恩施 445000;2.湖北省农业科学院农产品加工与核农技术研究所,湖北?武汉 430064;3.武汉梁子湖水产品加工有限公司,湖北?武汉 430212)
  • 发布日期:2025-06-20
  • 基金资助:
    湖北省自然科学基金杰青项目(2022CFA095);湖北省重点研发计划项目(2023BBB103)

Research Progress in the Screening of Antimicrobial Substances Based on Machine Learning

HOU Jiangxia, JIANG Jinhui, WANG Chenxin, WANG Lan, SHI Liu, WU Wenjin, GUO Xiaojia, CHEN Sheng, CHEN Lang, CAO Feng, SUN Li, ZHOU Zhi   

  1. (1. College of Biology and Food Engineering, Hubei Minzu University, Enshi 445000, China; 2. Institute of Agro-product Processing and Nuclear Agricultural Technology, Wuhan 430064, China; 3. Wuhan Liangzi Lake Aquatic Products Processing Co., Ltd., Wuhan 430212, China)
  • Published:2025-06-20

摘要: 细菌耐药性问题对人类、畜禽健康和公共卫生构成极大威胁,因此,寻找有效的新型抗菌化合物迫在眉睫。传统抑菌活性筛选方法存在耗时、耗力,且结果的准确性和客观性较差等问题,机器学习算法作为人工智能的一个分支,因其在处理大规模数据、特征提取和模型优化方面的优异表现,已逐渐被引入到抑菌物质筛选中。本文综述了常用的机器学习算法模型,如随机森林、支持向量机、深度学习等在抑菌活性物质中的筛选,深入探讨了机器学习在抗生素、抗菌肽、精油、多酚筛选中的应用,旨在为抑菌活性物质筛选中的机器学习技术提供参考。

关键词: 机器学习;抑菌活性物质;筛选

Abstract: The problem of bacterial resistance poses a significant threat to human and animal health as well as public safety, making the discovery of effective new antimicrobial compounds an urgent priority. Traditional methods for screening antimicrobial activity are often time-consuming and labor-intensive, with limited accuracy and objectivity. As a branch of artificial intelligence, machine learning algorithms have demonstrated exceptional capabilities in processing large-scale data, feature extraction, and model optimization, leading to their increasing application in the screening of antimicrobial substances. This paper reviews commonly used machine learning models, such as random forests, support vector machines, and deep learning, in antimicrobial activity screening. It provides an in-depth exploration of machine learning applications in the discovery of antimicrobial peptides, essential oils, and polyphenols, aiming to offer valuable insights into the application of machine learning techniques for identifying antimicrobial compounds.

Key words: machine learning; antimicrobial substances; screening

中图分类号: