食品科学 ›› 2025, Vol. 46 ›› Issue (17): 43-48.doi: 10.7506/spkx1002-6630-20250328-221

• 食品化学 • 上一篇    

季铵化纤维素纳米纤维/玉米醇溶蛋白纳米粒子对岩藻黄质稳态化性能调控

陈柏慧,蔡路昀,邹继华,贾江花,汪屹,杨柳枫,田方,栾倩   

  1. (1.浙江海洋大学食品与药学学院,浙江?舟山 316022;2.浙江大学宁波国际科创中心,浙江?宁波 315100;3.浙江大学生物系统工程与食品科学学院,浙江?杭州 310058;4.美康生物科技股份有限公司,浙江?宁波 315100;5.宁波路鸣生物科技有限公司,浙江?宁波 315100)
  • 发布日期:2025-08-18
  • 基金资助:
    国家自然科学基金青年科学基金项目(32402068);宁波市海洋经济发展专项(NBHY-2024-2); 宁波市团队科技特派员项目(2024S217)

Regulatory Effect of Quaternized Cellulose Nanofiber/Zein Nanoparticles on the Steady-State Performance of Fucoxanthin

CHEN Baihui, CAI Luyun, ZOU Jihua, JIA Jianghua, WANG Yi, YANG Liufeng, TIAN Fang, LUAN Qian   

  1. (1. Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China; 2. Ningbo Global Innovation Center, Zhejiang University, Ningbo 315100, China; 3. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; 4. Meikang Medicalsystem Biotechnology Co. Ltd., Ningbo 315100, China; 5. Ningbo Luming Biotechnology Co. Ltd., Ningbo 315100, China)
  • Published:2025-08-18

摘要: 构建季铵化纤维素纳米纤维(quaternized cellulose nanofiber,QCNF)/玉米醇溶蛋白(zein)核壳递送体系,通过精准调控季铵化纤维素质量浓度(0.05~0.25 g/100 mL)揭示递送体系对岩藻黄质(fucoxanthin,FUC)稳态化及靶向递送的调控机制。傅里叶变换红外光谱表明zein与纳米纤维之间通过静电作用形成稳定界面;透射电子显微图像显示0.2 g/100 mL QCNF组形成显著的逐层自组装核壳结构,对FUC的包封率达(95.64±0.06)%。环境稳定性实验表明,优化组(0.2 g/100 mL QCNF/zein@FUC)的热、光、pH值、离子、贮藏稳定性较对照组(zein@FUC)提升。另外,通过引入QCNF覆盖于zein表面,能够引发内部FUC的被动靶向释放行为,提高FUC在肠道的生物可及性。体外模拟消化实验结果表明,0.2 g/100 mL QCNF/zein@FUC在模拟胃肠道的累计释放量为(85.32±0.46)%,生物可及性高达(58.77±3.84)%,实现了FUC的程序性缓释。本研究结果为探究天然生物基自组装纳米递送载体的形成机理与稳态化靶向释放性能提供了理论支持。

关键词: 岩藻黄质;季铵化纤维素纳米纤维;玉米醇溶蛋白;核壳纳米颗粒;稳态化递送

Abstract: This study innovatively constructed a quaternized cellulose nanofiber (QCNF)/zein core-shell delivery system. By precisely controlling the concentration of QCNF (0.05–0.25 g/100 mL), the regulatory mechanisms of this system on the steady-state performance and targeted delivery of fucoxanthin (FUC) were elucidated. Fourier transform infrared (FTIR) spectroscopy revealed that electrostatic interactions between zein and nanofibers led to the formation of a stable interface. Transmission electron microscopy (TEM) images demonstrated that at a QCNF concentration of 0.2 g/100 mL, a distinct layer-by-layer self-assembled core-shell structure was formed, and the encapsulation efficiency of FUC was (95.64 ± 0.06) %. Moreover, 0.2 g/100 mL QCNF/zein@FUC was more stable to heat, light, pH and ions during storage at 4 ℃ compared with the control group (zein@FUC). Furthermore, the addition of QCNF as a coating on the zein surface was found to trigger passive targeted release of the encapsulated fucoxanthin, thereby enhancing its intestinal bioaccessibility. During in vitro simulated digestion, the cumulative release of 0.2 g/100 mL QCNF/zein@FUC was (85.32 ± 0.46) % with a bioaccessibility of (58.77 ± 3.84) %, indicating programmed and sustained release of fucoxanthin. The findings of this study offer theoretical support for exploring the formation mechanism and the steady-state targeted release performance of natural bio-based self-assembled nanodelivery carriers.

Key words: fucoxanthin; quaternized cellulose nanofibers; zein; core-shell nanoparticles; steady-state delivery

中图分类号: