食品科学 ›› 2010, Vol. 31 ›› Issue (17): 340-344.doi: 10.7506/spkx1002-6630-201017076

• 生物工程 • 上一篇    下一篇

响应面法优化链霉菌HD-010 发酵产抗辣椒根腐病菌活性物质条件

张海秀1,杜春梅2*   

  1. 1.哈尔滨学院理学院
    2.黑龙江大学生命科学学院
  • 收稿日期:2010-06-30 修回日期:2010-09-03 出版日期:2010-09-15 发布日期:2010-12-29
  • 通讯作者: 杜春梅* E-mail:80110507@sina.com
  • 基金资助:

    黑龙江省新世纪高等教育教学改革工程项目(5775)

Response Surface Optimization of Medium Composition and Fermentation Conditions for the Production of Anti-Fusarium soloni Substances by Streptomyces HD-010

ZHANG Hai-xiu1,DU Chun-mei2,*   

  1. 1. College of Sciences, Harbin University, Harbin 150086, China;
    2. College of Life Sciences, Heilongjiang University, Harbin 150080, China
  • Received:2010-06-30 Revised:2010-09-03 Online:2010-09-15 Published:2010-12-29
  • Contact: DU Chun-mei E-mail:80110507@sina.com

摘要:

用Plackett-Burman 和中心复合(central composite design)试验设计对影响拮抗链霉菌HD-010 菌株发酵生产抗辣椒根腐病菌活性物质的9 个因素进行筛选优化。结果表明:葡萄糖、蔗糖、玉米粉是发酵培养基中影响抗菌活性物质产量的主要因素。以发酵液效价值为响应值,对3 个因素进行中心复合设计,并经响应面法优化分析得到影响抗菌活性物质效价值的二阶模型,确定最优发酵培养基3 个关键因素的水平为:葡萄糖质量浓度10g/L,蔗糖质量浓度10.2g/L,玉米粉质量浓度25.8g/L,采用此优化配方,发酵液效价值比原始发酵培养基发酵液提高了55.28%,为进一步生产提供参考。

关键词: No.010菌株, 发酵条件, 响应面优化

Abstract:

In this study, anti-Fusarium soloni substances were produced by means of Streptomyces HD-010 fermentation. In order to maximize anti-Fusarium soloni potency, Plackett-Burman (PB) experimental design was initially used to screen the most important affecting factors out of nine ones including medium components and fermentation conditions, followed by central composition design based response surface optimization of three screened factors. Glucose, sucrose and corn flour concentrations in fermentation medium were the most important factors affecting the production of anti-Fusarium soloni substances and their optimum levels were 10, 10.2 g/L and 25.8 g/L, respectively. The anti-Fusarium soloni potency of the fermentation supernatant obtained under these optimum levels was 71.3784 AU/mL, much higher than before optimization (45.9669 AU/mL).

Key words: Streptomyces HD-010, fermentation, response surface optimization

中图分类号: