FOOD SCIENCE ›› 2023, Vol. 44 ›› Issue (16): 25-33.doi: 10.7506/spkx1002-6630-20220727-303

• Food Chemistry • Previous Articles     Next Articles

Regulation Mechanism of Processed Cheese Stretchability

SHEN Jianyang, SHENG Zhaoyue, GUO Mengyuan, GUO Huiyuan, WANG Pengjie, ZHANG Ying, ZHANG Xiaoying, FANG Xixi, WANG Yilun, WANG Caiyun, LUO Jie   

  1. (1. School of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; 2. Institute of Nutrition and Health, China Agricultural University, Beijing 100083, China; 3. Inner Mongolia Yijiahao Cheese Co. Ltd., Tianjin 300308, China; 4. Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group Co. Ltd., Beijing 100160, China; 5. Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Huhhot 010000, China)
  • Online:2023-08-25 Published:2023-09-01

Abstract: In this work, the regulation mechanism of processed cheese stretchability was studied by adjusting the amount of added emulsifying salt (0.6%–3.0%) and potato acetate starch (0.125%–2%) and pH (5.4–5.8). The results showed that as the emulsifying salt increased from 0.6% to 3.0%, the content of bound calcium in processed cheese decreased from (4.42 ± 0.05) to (0.02 ± 0.04) g/kg, the average fat globule size D(4,3) decreased from (73.08 ± 3.16) to (27.90 ± 2.55) μm, and the bound water content increased from (9.57 ± 0.25)% to (10.40 ± 0.25)%, indicating that the calcium crosslinking effect gradually decreased, the emulsifying effect and hydration degree increased, the interaction between protein molecules changed from strong to weak, so the stretchability of processed cheese initially increased and then decreased. As pH increased from 5.4 to 5.8, the content of bound calcium increased from (2.01 ± 0.08) to (2.74 ± 0.05) g/kg, and the average fat globule size D(4,3) decreased from (36.36 ± 2.68) to (21.37 ± 2.39) μm. Fourier transform infrared spectroscopy showed that the bending vibration absorption peaks of O–H and N–H moved to lower wavenumbers, and the bound water content increased from (9.85 ± 0.16)% to (10.74 ± 0.12)%, indicating that the calcium crosslinking effect, emulsifying effect and hydration degree increased, the interaction between protein molecules changed from strong to weak, so the stretchability of processed cheese increased first and then decreased. As potato acetate starch concentration increased from 0.125% to 2%, the average fat globule size D(4,3) decreased from (54.17 ± 2.74) to (29.92 ± 2.71) μm, and the bound water content increased from (9.90 ± 0.38)% to (11.00 ± 0.21)%, indicating that the emulsifying effect and hydration degree increased, and the stretchability increased first and then decreased. At a potato acetate starch concentration of 2%, starch and protein were separated, so the stretchability became worse. In conclusion, the stretchability of processed cheese is comprehensively regulated by the degree of calcium ion chelation, emulsifying effect, electrostatic interaction between protein molecules, water distribution state and protein-polysaccharide phase behavior.

Key words: processed cheese; stretchability; calcium distribution; moisture distribution; emulsibility

CLC Number: